PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic modelling of bacteriophage production process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bacteriophages, viruses that can infect bacteria, are promising alternatives for antibiotic treatment caused by antibiotic-resistant bacteria strains. For that reason, the production of bacteriophages is extensively studied. Mathematical modelling can lead to the improvement of bioprocess by identification of critical process parameters and their impact on the demanded product. Dynamic modelling considers a system (i.e. bioreactor or bioprocess) as a dynamic object focusing on changes in the initial and final parameters (such as biomass concentration and product formation) in time, so-called signals and treats the studied system as a “black box” that processes signals. This work aimed to develop a mathematical model that describes bacteriophage production process. As result, we created a dynamic model that can estimate the number of bacteriophages released from cells as plaque-forming units at specific time points based on the changes in the bacteria host-cell concentration. Moreover, the proposed model allowed us to analyze the impact of the initial virus concentration given by multiplicity of infection (MOI) on the amount of produced bacteriophages.
Rocznik
Strony
471–--482
Opis fizyczny
Bibliogr. 37 poz., il., tab.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
  • Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
  • Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
  • Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
  • Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Ackermann H.-W., 2012. Who went into phage research? Bacteriophage, 2, 55–59. DOI: 10.4161/bact.18680.
  • 2. Ahiwale S.S., Bankar A.V., Tagunde S., Kapadnis B.P., 2017. A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian J. Microbiol., 57, 188–194. DOI: 10.1007/s12088-017-0640-x.
  • 3. Ali J., Rafiq Q., Ratcliffe, E., 2019. A scaled-down model for the translation of bacteriophage culture to manufacturing scale. Biotechnol. Bioeng., 116, 972–984. DOI: 10.1002/bit.26911.
  • 4. Augustyniak A., Grygorcewicz B., Nawrotek P., 2018. Isolation of multidrug resistant coliforms and their bacteriophages from swine slurry. Turk. J. Vet. Anim. Sci., 42, 319–325. DOI: 10.3906/vet-1710-102.
  • 5. Basu S., Agarwal M., Bhartiya S.K., Nath G., Kumar Shukla V., 2015. An in vivo wound model utilizing bacteriophage therapy of pseudomonas aeruginosa biofilms. Ostomy Wound Manage., 61(4), 16–23.
  • 6. Bhardwaj N., Bhardwaj S.K., Mehta J., Kim K.-H., Deep A., 2017. MOF–Bacteriophage biosensor for highly sensitive and specific detection of Staphylococcus aureus. ACS Appl. Mater. Interfaces, 9, 33589-33598. DOI:
  • 7. 10.1021/acsami.7b07818. Brindley C., Jiménez-Ruíz N., Acién F.G., Fernández-Sevilla J.M., 2016. Light regime optimization in photobioreactors using a dynamic photosynthesis model. Algal Res., 16, 399–408. DOI: 10.1016/J.ALGAL.2016.03.033. Brun C., Elchinger P.-H., Nonglaton G., Tidiane-Diagne C., Tiron R., Thuaire A.,
  • 8. Gasparutto D., Baillin X., 2017. Metallic conductive nanowires elaborated by PVD metal deposition on suspended DNA bundles. Small, 13, 1700956. DOI: 10.1002/smll.201700956.
  • 9. Bruttin A., Brüssow H., 2005. Human volunteers receiving Escherichia coli phage T4 orally: A safety test of phagetherapy. Antimicrob. Agents Chemother., 49, 2874–2878. DOI: 10.1128/AAC.49.7.2874-2878.2005.
  • 10. Byeon H.M., Vodyanoy V.J., Oh J.-H., Kwon J.-H., Park M.-K., 2015. Lytic Phage-based magnetoelastic biosensors for on-site detection of methicillin-resistant Staphylococcus aureus on spinach leaves. J. Electrochem. Soc., 162, 8, B230. DOI: 10.1149/2.0681508jes.
  • 11. Chen J., Duncan B., Wang Z., Wang L.-S., Rotello V.M., Nugen S.R., 2015. Bacteriophage-based nanoprobes for rapid bacteria separation. Nanoscale, 7, 16230–16236. DOI: 10.1039/c5nr03779d.
  • 12. Crothers-Stomps C., Høj L., Bourne D.G., Hall M.R., Owens L., 2010. Isolation of lytic bacteriophage against Vibrio harveyi. J. Appl. Microbiol., 108, 1744–1750. DOI: 10.1111/j.1365-2672.2009.04578.x.
  • 13. De Czekala A., Luk D., Bartl P., 1972. Large-scale production of lambda bacteriophage and purified lambda deoxyribonucleic acid. Appl. Microbiol., 23, 791–795. DOI: 10.1128/aem.23.4.791 795.1972.
  • 14. Drilling A., Morales S., Jardeleza C., Vreugde S., Speck P., Wormald P.-J., 2014. Bacteriophage reduces biofilm of Staphylococcus aureus ex vivo isolates from chronic rhinosinusitis patients. Am. J. Rhinol. Allergy, 28, 3–11. DOI: 10.2500/ajra.2014.28.4001.
  • 15. Grygorcewicz B., Roszak M., Rakoczy R., Augustyniak A., Konopacki M., Jabłońska J., Serwin N., Cecerska-Heryć E., Kordas M., Galant K., Dołęgowska B., 2022. PhageScore-based analysis of Acinetobacter baumannii infecting phages antibiotic interaction in liquid medium. Arch. Microbiol., 204, 421. DOI: 10.1007/S00203-022-03020-7.
  • 16. Grygorcewicz, B., Grudziński M., Wasak A., Augustyniak A., Pietruszka A., Nawrotek P., 2017. Bacteriophagemediated reduction of Salmonella Enteritidis in swine slurry. Appl. Soil Ecol., 119, 179–182. DOI: 10.1016/j.apsoil. 2017.06.020.
  • 17. Heringa S.D., Kim J.K., Jiang X., Doyle M.P., Erickson M.C., 2010. Use of a mixture of bacteriophages for biological control of Salmonella enterica strains in compose. Appl. Environ. Microbiol., 76, 5327–5332. DOI: 10.1128/AEM. 00075-10.
  • 18. Hiremath N., Guntupalli R., Vodyanoy V., Chin B.A., Park M.K., 2015. Detection of methicillin-resistant Staphylococcus aureus using novel lytic phage-based magnetoelastic biosensors. Sens. Actuators, B, 210, 129–136. DOI: 10.1016/J.SNB.2014.12.083.
  • 19. Kalatzis P.G., Bastías R., Kokkari C., Katharios P., 2016. Isolation and characterization of two lytic bacteriophages, 𝜑St2 and 𝜑Grn1; phage therapy application for biological control of Vibrio alginolyticus in aquaculture live feeds. PLoS One, 11, e0151101. DOI: 10.1371/journal.pone.0151101.
  • 20. Konopacki M., Grygorcewicz B., Dołęgowska B., Kordas M., Rakoczy R., 2020. PhageScore: A simple method for comparative evaluation of bacteriophages lytic activity. Biochem. Eng. J., 161, 107652. DOI: 10.1016/j.bej.2020. 107652.
  • 21. Lim T.H., Kim M.S., Lee D.H., Lee Y.N., Park J.K., Youn H.N., Lee, H.J., Yang, S.Y., Cho Y.W., Lee J.B., Park S.Y., Choi I.S., Song C.S., 2012. Use of bacteriophage for biological control of Salmonella Enteritidis infection in chicken. Res. Vet. Sci., 93, 1173–1178. DOI: 10.1016/J.RVSC.2012.06.004.
  • 22. Luo Z.-H., Yu Y.-P., Jost G., Liu W.-H., Huang X.-L., Gu L., 2015. Characterization of two bacteriophages for specific treatment of biofilm formed by a Vibrio sp. isolated from an abalone farm. Aquac. Res., 47, 3964–3972. DOI: 10.1111/are.12846.
  • 23. Maghsoodi A., Chatterjee A., Andricioaei I., Perkins N.C., 2017. Dynamic model exposes the energetics and dynamics of the injection machinery for bacteriophage T4. Biophys. J., 113, 195–205. DOI: 10.1016/J.BPJ.2017.05.029.
  • 24. Mancuso F., Shi J., Malik D.J., 2018. High throughput manufacturing of bacteriophages using continuous stirred tank bioreactors connected in series to ensure optimum host bacteria physiology for phage production. Viruses, 10, 537. DOI: 10.3390/v10100537.
  • 25. O’Neill J., 2014. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance. London, United Kingdom. Available at: https://amr-review.org/Publications.html.
  • 26. Otawa K., Hirakata Y., Kaku M., Nakai Y., 2012. Bacteriophage control of vancomycin-resistant enterococci in cattle compost. J. Appl. Microbiol., 113, 499–507. DOI: 10.1111/j.1365-2672.2012.05361.x.
  • 27. Parasion S., Kwiatek M., Gryko R., Mizak L., Malm A., 2014. Bacteriophages as an alternative strategy for fighting biofilm development. Pol. J. Microbiol., 63, 137–145. DOI: 10.33073/pjm-2014-019.
  • 28. Roszak M., Dołęgowska B., Cecerska-Heryć E., Serwin N., Jabłońska J., Grygorcewicz B., 2022. Bacteriophageciprofloxacin combination effectiveness depends on Staphylococcus aureus – Candida albicans dual-species communities’ growth model. Microb. Drug Resist., 28, 613–622. DOI: 10.1089/mdr.2021.0324.
  • 29. Santajit S., Indrawattana N., 2016. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res. Int., 2016, 2475067. DOI: 10.1155/2016/2475067.
  • 30. Sargeant K., 1970. Large-scale bacteriophage production. Adv. Appl. Microbiol., 13, 121–137. DOI: 10.1016/S0065-2164(08)70402-7.
  • 31. Sargeant K., Yeo R.G., Lethbridge J.H., Shooter K.V., 1968. Production of bacteriophage T7. Appl. Microbiol., 16, 1483–1488. DOI: 10.1128/aem.16.10.1483-1488.1968.
  • 32. Sarker S.A., McCallin S., Barretto C., Berger B., Pittet A.-C., Sultana S., Krause L., Huq S., Bibiloni R., Bruttin A., Reuteler G., Brüssow H., 2012. Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology, 434, 222–232. DOI: 10.1016/j.virol.2012.09.002.
  • 33. Siquet-Descans F., Calberg-Bacq C.M., Delcambe L., 1973. Large scale production of bacteriophage Φ 174. Biotechnol. Bioeng., 15, 927–932. DOI: 10.1002/bit.260150510.
  • 34. Wang J., Hu B., Xu M., Yan Q., Liu S., Zhu X., Sun Z., Reed E., Ding L., Gong J., Li Q.Q., Hu J., 2006a. Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int. J. Mol. Med., 17, 309–317. DOI: 10.3892/ijmm.17.2.309.
  • 35. Wang S., Zeng X., Yang Q., Qiao S,. 2016b. Antimicrobial peptides as potential alternatives to antibiotics in foodanimal industry. Int. J. Mol. Sci., 17, 603. DOI: 10.3390/ijms17050603.
  • 36. Warner C.M., Barker N., Lee S.W., Perkins E.J., 2014. M13 bacteriophage production for large-scale applications. Bioprocess Biosyst. Eng., 37, 2067–2072. DOI: 10.1007/s00449-014-1184-7.
  • 37. Winton A., 2015. Polypeptides for bio-tethering and self-assembly of lithium ion battery electrodes. Biophys. J., 108, 630a. DOI: 10.1016/j.bpj.2014.11.3422.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd6fb1ef-42cc-4a19-8c35-42b134fa3ff8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.