PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Optimization analysis of interface circuits in piezoelectric energy harvesting systems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Piezoelectric energy harvesting systems have different interface circuits, including the standard interfacercuit, synchronized switch harvesting on inductor circuit, and synchronized charge extraction circuit. The comparison of an interface circuit with a different interface circuit to determine which is better has been widely investigated. However, for a certain interface circuit, how the parameters can be optimized to increase efficiency in energy collection has rarely been investigated. To improve the energy harvesting efficiency of a certain interface circuit in a fast and convenient manner, three interface circuits, which are the circuits to be optimized, were mainly introduced. A simulation method to optimize the circuit for energy collection was used. The simulation method was implemented in Pspice and includes parametric, sensitivity, and optimization analyses. The output power of parallel synchronized switch harvesting on the inductor circuit can be increased from 20.13 mW to 25.23 mW, and the output power of the synchronized charge extraction circuit can be increased from 11.98 mW to 19.85 mW. Results show that the energy collection performance can be improved by using the optimization simulation method.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • School of Technology, Beijing Forestry University, Beijing, 100083, China
autor
  • School of Technology, Beijing Forestry University, Beijing, 100083, China
autor
  • School of Technology, Beijing Forestry University, Beijing, 100083, China
Bibliografia
  • [1] H. A. Sodano, D. J. Inman, G. Park, A review of power harvesting from vibration using piezoelectric materials, Shock and Vibration Digest 36 (3) (2004) 197–206.
  • [2] S. R. Platt, S. Farritor, H. Haider, On low-frequency electric power generation with pzt ceramics, Mechatronics, IEEE/ASME Transactions on 10 (2) (2005) 240–252.
  • [3] V. W. Mahyastuty, A. A. Pramudita, Low energy adaptive clustering hierarchy routing protocol for wireless sensor network, TELKOMNIKA (Telecommunication Computing Electronics and Control) 12 (4) (2014) 963–968.
  • [4] C.-H. Chao, A remote power management strategy for the solar energy powered bicycle, TELKOMNIKA (Telecommunication Computing Electronics and Control) 9 (3) (2013) 483–488.
  • [5] M. F. B. A. Rahman, S. L. Kok, Investigation of useful ambient vibration sources for the application of energy harvesting, in: Research and Development (SCOReD), 2011 IEEE Student Conference on, IEEE, 2011, pp. 391–396.
  • [6] E. Arroyo, A. Badel, F. Formosa, Y. Wu, J. Qiu, Comparison of electromagnetic and piezoelectric vibration energy harvesters: model and experiments, Sensors and Actuators A: Physical 183 (2012) 148–156.
  • [7] L. Zhu, R. Chen, A new synchronized switching harvesting scheme employing current doubler rectifier, Sensors and Actuators A: Physical 174 (2012) 107–114.
  • [8] Y. Wu, A. Badel, F. Formosa, W. Liu, A. Agbossou, Selfpowered optimized synchronous electric charge extraction circuit for piezoelectric energy harvesting, Journal of Intelligent Material Systems and Structures 25 (17) (2014) 2165–2176.
  • [9] F. Cottone, L. Gammaitoni, H. Vocca, M. Ferrari, V. Ferrari, Piezoelectric buckled beams for random vibration energy harvesting, Smart materials and structures 21 (3) (2012) 035021.
  • [10] W. Liu, A. Badel, F. Formosa, Y. Wu, A. Agbossou, Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting, Smart materials and structures 22 (3) (2013) 035013.
  • [11] J. Qiu, H. Jiang, H. Ji, K. Zhu, Comparison between four piezoelectric energy harvesting circuits, Frontiers of Mechanical Engineering in China 4 (2) (2009) 153–159.
  • [12] G. K. Ottman, H. F. Hofmann, A. C. Bhatt, G. A. Lesieutre, Adaptive piezoelectric energy harvesting circuit for wireless remote power supply, Power Electronics, IEEE Transactions on 17 (5) (2002) 669–676.
  • [13] M. Lallart, É. Lefeuvre, C. Richard, D. Guyomar, Self-powered circuit for broadband, multimodal piezoelectric vibration control, Sensors and Actuators A: Physical 143 (2) (2008) 377–382.
  • [14] I. Lien, Y. Shu, W. Wu, S. Shiu, H. Lin, Revisit of series-sshi with comparisons to other interfacing circuits in piezoelectric energy harvesting, Smart Materials and Structures 19 (12) (2010) 125009.
  • [15] L. Tang, Y. Yang, Analysis of synchronized charge extraction for piezoelectric energy harvesting, Smart Materials and Structures 20 (8) (2011) 085022.
  • [16] Y. Wu, A. Badel, F. Formosa, W. Liu, A. E. Agbossou, Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction, Journal of Intelligent Material Systems and Structures 24 (12) (2013) 1445–1458.
  • [17] A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard, D. Guyomar, Single crystals and nonlinear process for outstanding vibration-powered electrical generators, IEEE transactions on ultrasonics, ferroelectrics, and frequency control 53 (4) (2006) 673–684.
  • [18] J. Liang, W.-H. Liao, Impedance modeling and analysis for piezoelectric energy harvesting systems, Mechatronics, IEEE/ASME Transactions on 17 (6) (2012) 1145–1157.
  • [19] L. Zhu, R. Chen, X. Liu, Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces, Journal of Intelligent Material Systems and Structures 23 (4) (2012) 441–451.
  • [20] J. Scruggs, An optimal stochastic control theory for distributed energy harvesting networks, Journal of Sound and Vibration 320 (4) (2009) 707–725.
  • [21] J. Scruggs, On the causal power generation limit for a vibratory energy harvester in broadband stochastic response, Journal of Intelligent Material Systems and Structures 21 (13) (2010) 1249–1262.
  • [22] J. Schoeftner, G. Buchberger, A contribution on the optimal design of a vibrating cantilever in a power harvesting application–optimization of piezoelectric layer distributions in combination with advanced harvesting circuits, Engineering Structures 53 (2013) 92–101.
  • [23] J. Liang, W.-H. Liao, Improved design and analysis of selfpowered synchronized switch interface circuit for piezoelectric energy harvesting systems, Industrial Electronics, IEEE Transactions on 59 (4) (2012) 1950–1960.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd6d978d-ed40-463c-8a37-0b548ef2030b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.