Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In retail chains, 1% to 3% of food production, i.e. thousands of tons every year, is perished or expired. Improper waste management poses a threat for human health and pollutes the environment. This waste may be successfully neutralised in the process of methane fermentation. The conducted research was to determine the depletion efficiency of selected expired food products, depending on the composition of the mix, as well as the manner of conducting fermentation and, therefore, duration time and the process temperature.
Czasopismo
Rocznik
Tom
Strony
132--137
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Faculty of Civil and Environmental Engineering, Białystok University of Technology, ul. Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
- 1. Dinsdale R.M., Hawkes F.R., Hawkes D.L. 1996. The mesophilic and thermophilic anaerobic digestion of coffee waste containing grounds. Water Research, 30(2), 371–377.
- 2. Głodek E. 2010. Guide. Biogas utilization. Institute of Ceramics and Building Materials, Opole.
- 3. Gradziuk P., Szmidt K. 1998. Technical, economic and ecological aspects of the use of biomass for energy purposes. Rearing of Bulk Plants, 2, 58–62.
- 4. Institute for Renewable Energy 2013. Biogas Production Use; http://www.ieo.pl/oferta/wydawnictwa/Biogaz%20-%20Produkcja%20Wykorzystywanie.pdf
- 5. Jędrczak A. 2008. Biological waste treatment. PWN Publishing House, Warsaw.
- 6. Jędrczak A., Królik D. 2013. The impact of the degree of meat fineness on the efficiency of the fermentation process. University of Zielona Góra. Science Notebooks No. 152. Environmental Engineering, 32, 52–68.
- 7. Kabouris J.C., Tezel U., Pavlostathis S.G., Engelmann M., Dulaney J., Gilletle R. et al. 2009. Methane recovery from anaerobic co-digestion of municipal sludge and FOG. Bioresource Technology, 100, 3701–3705.
- 8. Kazimierowicz J., Dzienis L. 2015. Giant Miscanthus as a substrate for biogas production, Journal of Ecological Engineering, 16(4), 139–142.
- 9. Kazimierowicz J. 2014. Organic waste used in agricultural biogas plants. Journal of Ecological Engineering, 15(2), 88–92.
- 10. Kościk B., Kowalczyk-Juśko A. 2004. Cultivation and use of perennial plants for energy purposes. Pam. Col., 132, 203–210.
- 11. Kuratorium für Technik und Bauwesen in der Landwirtschaft: Biogas – production and use (BIOGAZ guide), Institut für Energetik und Umwelt gGmbH, Leipzig 2011.
- 12. Magrel L. 2004. Forecasting the methane fermentation process of a mixture of sewage sludge and slurry. Bialystok University of Technology Publisher, Bialystok.
- 13. Neterowicz J. et al. 2015. Energy from waste – Swedish experience and the Polish reality. PIMOT Scientific Publisher, Warsaw.
- 14. Pawilonis J., Kupczyk A. 2006. Biogas as a source of renewable energy in Poland – production potential, current status and development perspectives of the sector. „Fermentation and fruit and vegetable industry”, 12.
- 15. Puyuelo B., Gea T., Sánchez A. 2010. A new control strategy for the composting process based on the oxygen uptake rate. Chemical Engineering Journal, 165, 161–169.
- 16. Sadecka Z. et al. 2013. Substrates for the co-fermentation process. Environmental Engineering Scientific Papers, 150, 23–33.
- 17. Sorda G., Sunak Y., Madler R. 2013. An agentbased spatial simulation to evaluate the promotion of electricity from agricultural biogas. Ecological Economics, 89, 43–60.
- 18. Sung S., Liu T. 2002. Ammonia inhibition on thermophilic aceticlastic methanogens. Water Sci. Technol., 10(45), 113–120.
- 19. Szatkowska B., Paulsrud B., Tonderski A. 2014. Assessment of biogas potential of organic waste in the Pomeranian Voivodship. IV Baltic Biogas Forum, Gdańsk, 11–12 September.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd656059-5e06-45d3-b2bf-cbaf0d444c25