Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Dwu-etapowa homogenizacja właściwości poroelastycznych wapienia
Języki publikacji
Abstrakty
This study aims at deriving the effective poroelastic properties of the oolitic limestones based on the Hashin composite sphere assemblage (CSA) micromechanical theory. The microstructure of oolitic limestones generally exhibits an assemblage of grains (oolites) surrounded by a matrix. Grain and matrix are linked via the interfacial transition zone (ITZ). Pores exist in these three material phases (oolite, ITZ and matrix). A two-step homogenization method is proposed. The first step consists of upscaling the properties of each porous phase (i.e. porous oolite, porous ITZ and porous matrix) in which each phase contains two sub-phases including pore and solid. The differential self-consistent scheme is used for the first step. At the second step, the three different porous constituents (oolite, ITZ and matrix) are assembled in a CSA model. A mathematical analogy between thermoelasticity and poroelasticity is used to obtain the effective poroelastic properties. A comparison between the proposed model and test data on the oolitic limestone from Bourgogne (France) helps to calibrate the model parameters and to highlight the role of ITZ phase.
W artykule, przedstawiono wyniki badań efektywnych właściwości poroelastycznych wapieni oolitowych w oparciu o teorię mikromechaniczną złożonego zespołu kul Hashin (CSA). Mikrostruktura wapieni oolitycznych wykazuje generalnie zbiór ziaren (oolitów) otoczonych matrycą. Ziarno i matryca są połączone za pośrednictwem międzyfazowej strefy przejściowej (ITZ). W tych trzech fazach materiału (oolit, ITZ i matryca) istnieją pory. Zaproponowano dwuetapową metodę homogenizacji. Pierwszy etap polega na zwiększeniu skali właściwości każdej porowatej fazy (tj. Porowatego oolitu, porowatej ITZ i porowatej matrycy), w której każda faza zawiera dwie podfazy: porową i stałą. W pierwszym etapie zastosowano różnicowy schemat samouzgodnienia. Na drugim etapie trzy różne porowate składniki (oolit, ITZ i matryca) są składane w modelu CSA. Matematyczne analogie między termosprężystością a poroelastycznością są wykorzystywane do uzyskania efektywnych właściwości poroelastycznych. Porównanie proponowanego modelu z danymi testowymi dotyczącymi wapienia oolitycznego z Bourgogne (Francja) pomaga skalibrować parametry modelu i podkreślić rolę fazy ITZ.
Czasopismo
Rocznik
Tom
Strony
31--39
Opis fizyczny
Bibliogr. 51 poz., tab., wykr., zdj.
Twórcy
autor
- Hanoi University of Mining and Geology, Hanoi, Vietnam, Vietnam
autor
- Hanoi University of Mining and Geology, Hanoi, Vietnam, Vietnam
autor
- Hanoi University of Mining and Geology, Hanoi, Vietnam, Vietnam
autor
- Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
autor
- Hanoi University of Mining and Geology, Hanoi, Vietnam, Vietnam
autor
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
autor
- Le Quy Don Technical University, Institute of Techniques for Special Engineering, Hanoi, Vietnam
autor
- Le Quy Don Technical University, Institute of Techniques for Special Engineering, Hanoi, Vietnam
Bibliografia
- 1. Berryman, J. G. (1997). Generalization of Eshelby’s Formula for a Single Ellipsoidal Elastic Inclusion to Poroelasticity and Thermoelasticity. Physical Review Letters, 79(6), 1142–1145. https://doi.org/10.1103/PhysRevLett.79.1142.
- 2. Berryman, J. G., & Milton, G. W. (1991). Exact results for generalized Gassmann’s equations in composite porous media with two constituents. GEOPHYSICS, 56(12), 1950–1960. https://doi.org/10.1190/1.1443006.
- 3. Berryman, J. G., & Milton, G. W. (1992). Exact results in linear thermomechanics of fluid‐saturated porous media. Applied Physics Letters, 61(17), 2030–2032. https://doi.org/10.1063/1.108349
- 4. Biot, M. A. (1941). General Theory of Three‐Dimensional Consolidation. Journal of Applied Physics, 12(2), 155–164. https://doi.org/10.1063/1.1712886.
- 5. Chen, F., Giraud, A., Grgic, D., & Kalo, K. (2017). A composite sphere assemblage model for porous oolitic rocks: Application to thermal conductivity. Journal of Rock Mechanics and Geotechnical Engineering, 9(1), 54–61. https://doi.org/10.1016/j.jrmge.2016.06.012.
- 6. Conil, N., Vitel, M., Plua, C., Vu, M. N., Seyedi, D., & Armand, G. (2020). In Situ Investigation of the THM Behavior of the Callovo-Oxfordian Claystone. Rock Mechanics and Rock Engineering. https://doi.org/10.1007/s00603-020-02073-8.
- 7. Dormieux, L, Kondo, D, & Ulm, F. (2006). Microporomechanics. John Wiley and Sons. https://www.amazon.com/Microporomechanics-Luc-Dormieux/dp/0470031883
- 8. Eshelby, J. D., & Peierls, R. E. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 241(1226), 376–396. https://doi.org/10.1098/rspa.1957.0133.
- 9. Fabre, D., & Gustkiewicz, J. (1997). Poroelastic properties of limestones and sandstones under hydrostatic conditions. International Journal of Rock Mechanics and Mining Sciences, 34(1), 127–134. https://doi.org/10.1016/S1365-1609(97)80038-X.
- 10. Giraud, A., Hoxha, D., Do, D. P., & Magnenet, V. (2008). Effect of pore shape on effective porothermoelastic properties of isotropic rocks. International Journal of Solids and Structures, 45(1), 1–23. https://doi.org/10.1016/j.ijsolstr.2007.07.005.
- 11. Giraud, A., Nguyen, N. B., & Grgic, D. (2012). Effective poroelastic coefficients of isotropic oolitic rocks with micro and meso porosities. International Journal of Engineering Science, 58, 57–77. https://doi.org/10.1016/j.ijengsci.2012.03.025.
- 12. Grgic, D. (2011). Influence of CO2 on the long‐term chemomechanical behavior of an oolitic limestone—Grgic—2011—Journal of Geophysical Research: Solid Earth—Wiley Online Library. Journal of Geophysical Research, 116. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010JB008176
- 13. Han, S., Cheng, Y., Gao, Q., Yan, C., Han, Z., & Zhang, J. (2019). Investigation on heat extraction characteristics in randomly fractured geothermal reservoirs considering thermo-poroelastic effects. Energy Science & Engineering, 7(5), 1705–1726. https://doi.org/10.1002/ese3.386
- 14. Hart, D. J., & Wang, H. F. (1995). Laboratory measurements of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone. Journal of Geophysical Research: Solid Earth, 100(B9), 17741–17751. https://doi.org/10.1029/95JB01242
- 15. Hashin, Z., & Monteiro, P. J. M. (2002). An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste. Cement and Concrete Research, 32(8), 1291–1300. https://doi.org/10.1016/S0008-8846(02)00792-5
- 16. Hashin, Z. (1962). The Elastic Moduli of Heterogeneous Materials. Journal of Applied Mechanics, 29(1), 143–150. https://doi.org/10.1115/1.3636446
- 17. He, Q.-C., & Benveniste, Y. (2004). Exactly solvable spherically anisotropic thermoelastic microstructures. Journal of the Mechanics and Physics of Solids, 52(11), 2661–2682. https://doi.org/10.1016/j.jmps.2004.03.012
- 18. Herve, E. (2002). Thermal and thermoelastic behaviour of multiply coated inclusion-reinforced composites. International Journal of Solids and Structures, 39(4), 1041–1058. https://doi.org/10.1016/S0020-7683(01)00257-
- 19. Herve, Eveline, & Zaoui, A. (1993). N-Layered inclusion-based micromechanical modelling. International Journal of Engineering Science, 31(1), 1–10. https://doi.org/10.1016/0020-7225(93)90059-4
- 20. Hill, R. (1965). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13(4), 213–222. https://doi.org/10.1016/0022-5096(65)90010-4
- 21. Kim, J.-M. (2004). Fully coupled poroelastic governing equations for groundwater flow and solid skeleton deformation in variably saturated true anisotropic porous geologic media. Geosciences Journal, 8(3), 291. https://doi.org/10.1007/BF02910248
- 22. Levin, V. M., & Alvarez-Tostado, J. M. (2003). Eshelby’s formula for an ellipsoidal elastic inclusion in anisotropic poroelasticity and thermoelasticity. International Journal of Fracture, 119(4), L77–L82. https://doi.org/10.1023/A:1024907500335
- 23. Levin, V. M., & Alvarez-Tostado, J. M. (2006). Explicit Effective Constants for an Inhomogeneous Porothermoelastic Medium. Archive of Applied Mechanics, 76(3), 199–214. https://doi.org/10.1007/s00419-006-0016-x
- 24. Lion, M., Skoczylas, F. & Ledesert. B (2004). Determination of the main hydraulic and poro-elastic properties of a limestone from Bourgogne, France. International Journal of Rock Mechanics and Mining Sciences, 41(6), 915–925.
- 25. Madhubabu, N., Singh, P. K., Kainthola, A., Mahanta, B., Tripathy, A., & Singh, T. N. (2016). Prediction of compressive strength and elastic modulus of carbonate rocks. Measurement, 88, 202–213. https://doi.org/10.1016/j.measurement.2016.03.050
- 26. Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5), 571–574. https://doi.org/10.1016/0001-6160(73)90064-3
- 27. Nguyen, N.B. (2010). Modélisation micromécanique des roches poreuses. Application aux calcaires oolitiques [PhD Thesis]. Institut National Polytechnique de Lorraine.
- 28. Nguyen, N. B., Giraud, A., & Grgic, D. (2011). A composite sphere assemblage model for porous oolitic rocks. International Journal of Rock Mechanics and Mining Sciences, 48(6), 909–921. https://doi.org/10.1016/j.ijrmms.2011.05.003
- 29. Nguyen, S. T., Pham, D. C., Vu, M. N., & To, Q. D. (2016). On the effective transport properties of heterogeneous materials. International Journal of Engineering Science, 104, 75–86.
- 30. Nguyen, S. T., Tang, A. M., To, Q. D., & Vu, M. N. (2019). A model to predict the elastic properties of gas hydrate-bearing sediments. Journal of Applied Geophysics, 169, 154–164.
- 31. Nguyen, S. T., Vu, M.-H., & Vu, M. N. (2015). Equivalent porous medium for modeling of the elastic and the sonic properties of sandstones. Journal of Applied Geophysics, 120, 1–6. https://doi.org/10.1016/j.jappgeo.2015.06.004
- 32. Nguyen, S.-T., To, Q. D., & Vu, M. N. (2017). Extended analytical solutions for effective elastic moduli of cracked porous media. Journal of Applied Geophysics, 140, 34–41. https://doi.org/10.1016/j.jappgeo.2017.03.007
- 33. Nguyen, T. T. N., Vu, M. N., Tran, N. H., Dao, N. H., & Pham, D. T. (2020). Stress induced permeability changes in brittle fractured porous rock. International Journal of Rock Mechanics and Mining Sciences, 127, 104224. https://doi.org/10.1016/j.ijrmms.2020.104224
- 34. Nguyen-Sy, T., Nguyen, T.-K., Dao, V.-D., Le-Nguyen, K., Vu, N.-M., To, Q.-D., Nguyen, T.-D., & Nguyen, T.-T. (2020). A flexible homogenization method for the effective elastic properties of cement pastes with w/c effect. Cement and Concrete Research, 134, 106106. https://doi.org/10.1016/j.cemconres.2020.106106
- 35. Norris, A. N. (1985). A differential scheme for the effective moduli of composites. Mechanics of Materials, 4(1), 1–16. https://doi.org/10.1016/0167-6636(85)90002-X
- 36. Pham, D.-T., Vu, M.-N., Trieu, H. T., Bui, T. S., & Nguyen-Thoi, T. (2020). A thermo-mechanical meso-scale lattice model to describe the transient thermal strain and to predict the attenuation of thermo-mechanical properties at elevated temperature up to 800 °C of concrete. Fire Safety Journal, 114, 103011. https://doi.org/10.1016/j.firesaf.2020.103011
- 37. Nemat-Nasser, S. & Hori, M. (1999). Micromechanics: Overall Properties of Heterogeneous Materials—2nd Edition (North Holland-Elsevier). https://www.elsevier.com/books/micromechanics-overall-properties-of-heterogeneous-materials/nemat-nasser/978-0-444-50084-7
- 38. Seyedi, D. M., Vu, M.-N., & Pouya, A. (2015). A two-scale hydromechanical model for fault zones accounting for their heterogeneous structure. Computers and Geotechnics, 68, 8–16. https://doi.org/10.1016/j.compgeo.2015.03.001
- 39. Seyedi D, Vu MN, & Pouya A. (2011). A Two-scale Model For Simulating the Hydromechanical Behavior of Faults During CO2 Geological Storage Operation. 45th U.S. Rock Mechanics / Geomechanics Symposium, 68, 8–16. https://www.onepetro.org/conference-paper/ARMA-11-257
- 40. Seyedi Darius, Armand Gilles, Conil Nathalie, Vitel Manon, & Vu Minh-Ngoc. (n.d.). On the Thermo-Hydro-Mechanical Pressurization in Callovo-Oxfordian Claystone under Thermal Loading. Poromechanics VI, 754–761. https://doi.org/10.1061/9780784480779.093
- 41. Shafiro, B., Kachanov, M., Shafiro, B., & Kachanov, M. (2000). Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes. JAP, 87(12), 8561–8569. https://doi.org/10.1063/1.373579
- 42. Trieu, H.T. (2010). Laboratory and numerical investigations of variable density-flow and transport in Hele-Shaw cell. Conference: XVIII International Conference on Water Resources. Conference: XVIII International Conference on Water Resources, Barcelona. https://www.researchgate.net/publication/334544794_Laboratory_and_numerical_investigations_of_variable_density-flow_and_transport_in_Hele-Shaw_cell
- 43. Trieu, Hung Truong. (2011). Études théorique et expérimentale du transport de fluides miscibles en cellule Hele-Shaw [These de doctorat, Vandoeuvre-les-Nancy, INPL]. http://www.theses.fr/2011INPL027N.
- 44. Vu, M. N. (2012). Modélisation des écoulements dans des milieux poreux fracturés par la méthode des équations aux intégrales singulières [Phdthesis, Université Paris-Est]. https://pastel.archives-ouvertes.fr/pastel-00777926
- 45. Vu M.N, Armand G, & Plúa C. (2019). Thermal Pressurization Coefficient of Anisotropic Elastic Porous Media | Request PDF. Rock Mechanics and Rock Engineering, 53, 2027–2031.
- 46. Vu, M.-N., Pouya, A., & Seyedi, D. M. (2018). Effective permeability of three-dimensional porous media containing anisotropic distributions of oriented elliptical disc-shaped fractures with uniform aperture. Advances in Water Resources, 118, 1–11. https://doi.org/10.1016/j.advwatres.2018.05.014
- 47. Xu, S, & Payne, M. A. (2009). Modeling elastic properties in carbonate rocks | The Leading Edge. The Leading Edge, 28(1), 66–74.
- 48. Hashin, Z & Shtrikman. S. (1962). A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials: Journal of Applied Physics: Vol 33, No 10. Journal of Applied Physics, 33, 3125–3131.
- 49. Hashin, Z & Shtrikman. S. (1963). A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2), 127–140. https://doi.org/10.1016/0022-5096(63)90060-7.
- 50. Zimmerman RW. (1996). Effective conductivity of a two-dimensional medium containing elliptical inhomogeneities. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452, 1713–1727. https://doi.org/10.1098/rspa.1996.0091.
- 51. Zouari, R., Benhamida, A., & Dumontet, H. (2008). A micromechanical iterative approach for the behavior of polydispersed composites. International Journal of Solids and Structures, 45(11), 3139–3152. https://doi.org/10.1016/j.ijsolstr.2008.01.016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd648748-b797-4041-b303-a418a7ecf16d