Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Key protocols of the preparation of conjugated nitroalkenes were reviewed and critically discussed. It was established, that optimal strategy for the obtaining of target compounds are small molecules extrusion processes from saturated nitro-compounds. Among them, the most universal methodologies based on carboxylic acids elimination have been discussed, which provide for smooth applications.
Wydawca
Czasopismo
Rocznik
Tom
Strony
69--83
Opis fizyczny
Bibliogr. 69 poz., rys.
Twórcy
autor
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
autor
- Sustainable Process Integration Laboratory - SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69 Brno, Czech Republic
autor
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Radom Scientific Society, Rynek 15, 26-600 Radom, Poland
Bibliografia
- [1] Nair, D. K.; Kumar, T.; Namboothiri, I. N.; α-Functionalization of nitroalkenes and its applications in organic synthesis. Synlett. 2016, 27, 17, 2425-2442. DOI: 10.1055/s-0036-1588587
- [2] Halimehjani, A. Z.; Namboothiri, I. N.; Hooshmand, S. E.; Part I: Nitroalkenes in the synthesis of heterocyclic compounds. RSC Adv. 2014, 4, 89, 48022-48084. DOI: 10.1039/C4RA08828J
- [3] Łapczuk-Krygier, A.; Kącka-Zych, A.; Kula, K.; Recent progress in the field of cycloaddition reactions involving conjugated nitroalkenes. Curr. Chem. Lett. 2019, 8, 1, 13-38. DOI: 10.5267/j.ccl.2018.012.002
- [4] Yoshikoshi, A.; Miyashita, M.; Oxoalkylation of carbonyl compounds with conjugated nitro olefins. Acc. Chem. Res. 1985, 18, 9, 284-290. DOI: 10.1021/cr00075a002
- [5] Domingo, L.R.; Ríos-Gutiérrez, M.; Pérez, P. Applications of the conceptual density functional indices to organic chemistry reactivity. Molecules 2016, 21, 748. DOI: 10.3390/molecules21060748
- [6] Ríos-Gutiérrez, M.; Domingo, L.R. Unravelling the Mysteries of the 32CAReactions. Eur. J. Org. Chem. 2019, 267-282. DOI: 10.1002/ejoc.201800916
- [7] Zawadzinska, K.; Kula, K. Application of ß-phosphorylated nitroethenes in [3 + 2] cycloaddition reactions involving benzonitrile N-oxide in the light of DFT computational study. Organics 2021, 2, 3. DOI: 10.3390/org2010003
- [8] Ríos-Gutiérrez, M.; Domingo, L. R.; Jasiński, R. Understanding the different reactivity of (Z)-and (E)-β-nitrostyrenes in [3+ 2] cycloaddition reactions. An MEDT study. RSC Adv. 2021, 11 ,16 , 9698-9708. DOI: 10.1039/D1RA00891A
- [9] Kula, K.; Łapczuk-Krygier, A. A DFT computational study on the [3+2] cycloaddition between parent thionitrone and nitroethene. Curr. Chem. Lett. 2018, 7, 27-34. DOI: 10.5267/j.ccl.2018.02.001
- [10] Żmigrodzka, M.; Dresler, E.; Hordyjewicz-Baran, Z.; Kulesza, R.; Jasiński, R. A unique example of noncatalyzed 32CA involving (2E)-3-aryl-2-nitroprop-2-enenitriles. Chem. Heterocycl. Compd. 2017, 53, 1161-1162. DOI: 10.1007/s10593-017-2186-6
- [11] Jasiński, R. In the searching for zwitterionic intermediates on reaction paths of 32CA reactions between 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide and polymerizable olefins. RSC Adv. 2015, 5, 101045-101048. DOI: 10.1039/C5RA20747A
- [12] Fryźlewicz, A.; Kącka-Zych, A.; Demchuk, O.M.; Mirosław, B.; Woliński, P.; Jasiński, R. Green synthesis of nitrocyclopropane-type precursors of inhibitors for the maturation of fruits and vegetables via domino reactions of diazoalkanes with 2-nitroprop-1-ene. J. Clean. Prod. 2021, 292, 126079. DOI: 10.1016/j.jclepro.2021.126079
- [13] Jasiński, R. Nitroacetylene as dipolarophile in [2+3] cycloaddition reactions with allenyl-type three-atom components: DFT computational study. Monatshefte für Chemie 2015, 146, 591-599. DOI: 10.1007/s00706-014-1389-0
- [14] Fryźlewicz, A.; Olszewska, A.; Zawadzińska, K.; Woliński, P.; Kula, K.; Kącka-Zych, A., Łapczuk-Krygier, A. Jasiński, R. On the Mechanism of the Synthesis of Nitrofunctionalised Δ2-Pyrazolines via [3+ 2] Cycloaddition Reactions between α-EWG-Activated Nitroethenes and Nitrylimine TAC Systems. Organics 2022, 3, 1, 59-76. DOI: 10.3390/org3010004
- [15] Łapczuk-Krygier, A.; Ponikiewski, L.; Jasiński, R. The Crystal Structure of (1RS,4RS,5RS,6SR)-5-Cyano-5-nitro-6-phenyl-bicyclo[2.2.1]hept-2-ne. Cryst. Rep. 2014, 59, 961-963. DOI: 10.1134/S1063774514070128
- [16] Arroyo, P.; Picher, M.T.; Domingo, L.R. The domino reaction between 4,6-dinitrobenzofuroxan and cyclopentadiene. Insights on the nature of the molecular mechanism. J.Mol. Struct. 2004, 709,45. DOI: 10.1016/j.theochem.2003.10.072
- [17] Woliński, P.; Kącka-Zych, A.; Mirosław, B.; Wielgus, E.; Olszewska, A.; Jasiński, R. Green, One-pot Synthesis of 1,2-oxazine-type Herbicides Via Non-catalyzed Hetero Diels-alder Reactions Comprising (2E)-3-aryl-2-nitroprop-2-enenitriles. J. Clean. Prod. 2022, 356, 131878. DOI: 10.1016/j.jclepro.2022.131878
- [18] Jasiński, R. A reexamination of molecular mechanism of the Diels-Alder reaction between tetrafluoroethene and cyclopentadiene. React. Kinet. Mech. Catal. 2016, 119, 49-57. DOI: 10.1016/j.jmgm.2020.107714
- [19] Alnajjar, R.A.; Jasiński, R. Competition between [2 + 1]- and [4 + 1]-cycloaddition mechanisms in reactions of conjugated nitroalkenes with dichlorocarbene in the light of DFT computational study. J. Mol. Model. 2019, 25, e157. DOI: 10.1007/s00894-019-4006-7
- [20] Kącka-Zych, A. The Molecular Mechanism of the Formation of Four-Membered Cyclic Nitronates and Their Retro (3+2) Cycloaddition: A DFT Mechanistic Study. Molecules 2021, 26, 4786. DOI: 10.3390/molecules26164786
- [21] Kącka‐Zych, A.; Jasiński, R. Mechanistic aspects of the synthesis of seven‐membered internal nitronates via stepwise [4+ 3] cycloaddition involving conjugated nitroalkenes: Molecular Electron Density Theory computational study. J Comput Chem. 2022, 43, 18, 1221-1228. DOI: 10.1002/jcc.26885
- [22] Kadam, H. K.; Tilve, S. G. Advancement in methodologies for reduction of nitroarenes. RSC Adv. 2015, 5, 83391- 83407, DOI: 10.1039/C5RA10076C
- [23] Sukhorukov, A. Y. Nitro Compounds as Versatile Building Blocks for the Synthesis of Pharmaceutically Relevant Substances. Front. Chem. 2020, 8, 595246. DOI: 10.3389/fchem.2020.595246
- [24] Addison, C. C. The Significance of NO2Free Radicals in the Reactions of Dinitrogen Tetroxide and Metal Nitrates. Free Radicals in Inorganic Chemistry 1962, 131-142. DOI: 10.1021/ba-1962-0036.ch014
- [25] Levy, N.; Scaife, C. W. 240. Addition of dinitrogen tetroxide to olefins. Part I. General introduction. J. Chem. Soc. 1946, 1093-1096. DOI: 10.1039/jr9460001093
- [26] Levy, N.; Scaife, C. W.; Smith, A. E. W. 241. Addition of dinitrogen tetroxide to olefins. Part II. Ethylene. J. Chem. Soc. 1946, 1097-1100. DOI: 10.1039/jr9460001096
- [27] Beech, W. F. 53. Preparation of certain nuclear-substituted 2-aminophenolsulphonic acids. J. Chem. Soc. 1948, 212-216. DOI: 10.1039/jr9480000212
- [28] Bordwell, F.G.; Garbisch, E.W. Nitrations with acetyl nitrate. I. The nature of the nitrating agent and the mechanism of reaction with simple alkenes. J. Am. Chem. Soc. 1960, 82, 3588-3598. DOI: 10.1021/ja01499a029
- [29] Bachman, G.B.; Standish, N.W. Pat. U.S. 3037061 1962
- [30] Bachman B.; Standish N. W. Preparation of 1,1,1-Trichloro-3-nitro-2-alkenes. J. Org. Chem. 1961, 26, 1474. DOI: 10.1021/jo01064a038
- [31] Jasiński, R.; Dresler, E.; Mikulska, M.; Polewski, D. [3+2] Cycloadditions of 1-halo-1-nitroethenes with (Z)-C-(3,4,5-trimethoxyphenyl)-N-methyl-nitrone as regio- and stereocontrolled source of novel bioactive compounds: preliminary studies, Curr. Chem. Lett. 2016, 5, 123-128. DOI: 10.5267/j.ccl.2016.2.001
- [32] Sopova, A. S.; Perekalin, V. V.; Lebedneva, V. M. Reaction of α-(p-nitrophenyl)-β-bromo-β-nitroethylene with some cyclic active methine and methylene components Zh. Obshch. Khim. 1964, 34, 8, 2638-2641.
- [33] Knochel, P.;Seebach, D. Dehydratisierung von Nitroaldolen mit Dicyclohexylcarbodiimid: Herstellung von Nitroolefinen unter milden Bedingungen. Synthesis 1982, 12, 1017-1018. DOI: 10.1055/s-1982-30045
- [34] Jasiński, R.; Jasińska, E.; Dresler, E. A DFT computational study of the molecular mechanism of [3 + 2] cycloaddition reactions between nitroethene and benzonitrile N-oxides. J. Mol. Model. 2016, 23, 1. DOI: 10.1007/s00894-016-3185-8
- [35] Gold, M. H.; Hamel, E. E.; Klager, K. Preparation and Characterization of 2,2-Dinitroethanol1. J. Org. Chem. 1957, 22, 12, 1665-1667. DOI: 10.1021/jo01363a035
- [36] Wade, P. A.; Murray, J. K.; Shah-Patel, S.; Le, H. T. Competing Diels-Alder reactions of activated nitroethylene derivatives and [3, 3]-sigmatropic rearrangements of the cycloadducts. Chem. Commun. 2002, 10, 1090-1091. DOI: 10.1039/b200224h
- [37] Wade, P. A.; Murray Jr, J. K.; Shah-Patel, S.; Carroll, P. J. Generation and in situ Diels-Alder reactions of activated nitroethylene derivatives. Tetrahedron Lett. 2002, 43, 14, 2585-2588. DOI: 10.1016/S0040-4039(02)00348-9
- [38] Singh, N.; Pandey, J. Advances in Henry Reaction: A Versatile Method in Organic Synthesis. Mini-Rev. Org. Chem. 2020, 17, 3, 297-308. DOI: 10.2174/1570193X16666190214150144
- [39] Boguszewska-Czubara, A.; Lapczuk-Krygier, A.; Rykala, K.; Biernasiuk, A.; Wnorowski, A.; Popiolek, L.; Maziajka, A.; Hordydjewska, A.; Jasiński, R. Novel synthesis scheme and in vitro antimicrobial evaluation of a panel of (E)-2-aryl-1-cyano-1-nitroethenes. J. Enzyme Inhib. Med. Chem. 2016, 31, 6, 900-907. DOI:10.3109/14756366.2015.1070264
- [40] Jasiński, R.; Mirosław, B.; Demchuk, O. M.; Babyuk, D.; Łapczuk-Krygier, A. In the search for experimental and quantumchemical evidence for zwitterionic nature of (2E)-3-[4-(dimethylamino) phenyl]-2-nitroprop-2-enenitrile-An extreme example of donor-π-acceptor push-pull molecule. J. Mol. Struct. 2016, 1108, 689-697. DOI:10.1016/j.molstruc.2015.12.056
- [41] Amantini, D.; Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. Water, a clean, inexpensive, and re-usable reaction medium. One-pot synthesis of (E)-2-aryl-1-cyano-1-nitroethenes. Green Chem. 2001, 3, 5, 229-232. DOI:10.1039/b105522b
- [42] Valizadeh, H.; Mamaghani, M.; Badrian, A. Effect of microwave irradiation on reaction of arylaldehyde derivatives with some active methylene compounds in aqueous media. Synth. Commun. 2005, 35(6), 785-790. DOI:10.1081/SCC-200050942
- [43] Lešetický, L.; Fidler, V.; Procházka, M. Isomerisation of nitroolefines. II. Isomerisation reaction of nitroethylene. Collect. Czech. Chem. Commun. 1973, 38, 2, 459-464. DOI:10.1135/cccc19730459
- [44] Blomquist, A. T.; Tapp, W. J.; Johnson, J. R. Polymerization of nitroölefins. The preparation of 2-Nitropropene polymer and of derived vinylamine polymers. J. Am. Chem. Soc. 1945, 67, 9, 1519-1524. DOI:10.1021/ja01225a037
- [45] Buckley, G. D.; Scaife, C. W. 280. Aliphatic nitro-compounds. Part I. Preparation of nitro-olefins by dehydration of 2-nitro-alcohols. J. Chem. Soc. 1947, 1471. DOI:10.1039/jr9470001471
- [46] Miyashita, M.; Yanami, T.; Yoshikoshi, A. New 1,4-diketone synthesis using nitroolefins and trimethylsilyl enol ethers. A convenient regiospecific route to cyclopentenones. J. Am. Chem. Soc. 1976, 98, 15, 4679-4681. DOI:10.1021/ja00431a074
- [47] Melton, J.; McMurry, J. E. New method for the dehydration of nitro alcohols. J. Org. Chem. 1975, 40, 14, 2138-2139. DOI:10.1021/jo00902a033
- [48] Domingo, L. R. Molecular electron density theory: a modern view of reactivity in organic chemistry. Molecules 2016, 21, 10, DOI:1319. 10.3390/molecules21101319
- [49] Kącka-Zych, A.; Domingo, L.R.; Ríos-Gutiérrez, M.; Jasiński, R. Understanding the mechanism of the decomposition reaction of nitroethyl benzoate through the molecular electron density theory. Theor. Chem. Acc. 2017, 136, 129. DOI:10.1007/s00214-017-2161-4
- [50] Kącka, A. B.; Jasiński, R. A. A density functional theory mechanistic study of thermal decomposition reactions of nitroethyl carboxylates: undermine of “pericyclic” insight. Heteroat. Chem. 2016, 27, 5, 279-289. DOI:10.1002/hc.21326
- [51] Jasiński, R.; Kącka, A. A polar nature of benzoic acids extrusion from nitroalkyl benzoates: DFT mechanistic study. J. Mol. Model. 2015, 21, 3, 1-7. DOI: 10.1007/s00894-015-2592-6
- [52] Eremenko, L.T.; Oreshko, G.V., 1-Fluoro-1-nitroethylene, Bulletin of the Academy of Sciences of the USSR, Division of chemical science 1969, 18, 660. DOI: 10.1007/BF00907006
- [53] Brower, F.; Burkett, H. 1, 1, 1-Trichloro-2-arylamino-3-nitropropanes. J. Am. Chem. Soc. 1953, 75, 5, 1082-1084. DOI: 10.1021/ja01101a021
- [54] Zawadzińska, K.; Gadocha, Z.; Pabian, K.; Wróblewska, A.; Wielgus, E.; Jasiński, R. The First Examples of [3+ 2] Cycloadditions with the Participation of (E)-3, 3, 3-tribromo-1-nitroprop-1-ene. Materials 2022, 15, 21, 7584. DOI: 10.3390/ma15217584
- [55] Kącka, A.; Jasiński, R. A dramatic change of kinetic conditions and molecular mechanism of decomposition processes of nitroalkyl carboxylates catalyzed by ethylammonium cations. Comput. Theor. Chem. 2017, 1104, 37-42. DOI: 10.1016/j.comptc.2017.02.008
- [56] Kącka, A.; Jasiński, R. Triethylsulfonium and triethylphosphonium cations as novel catalysts for the decomposition process of nitroethyl benzoates. Phosphorus Sulfur Silicon Relat. Elem. 2017, 192, 12, 1252-1258. DOI: 10.1080/10426507.2017.1290626
- [57] Kącka, A.; Jasiński, R. DFT study of the decomposition reactions of nitroethyl benzoates catalyzed by the 1, 3-dimethylimidazolium cation. Curr. Chem. Lett. 2017, 6, 1, 15-22. DOI: 10.5267/j.ccl.2016.11.001
- [58] Wilkendorf, R.; Trénel, M. Zur Kenntnis aliphatischer Nitro-alkohole (II.) Chem. Ber. Recl. 1924, 57, 2, 306-309. DOI: 10.1002/cber.19240570226
- [59] Gold, M. H. Nitroölefins by the Vapor Phase Catalytic Cleavage of Esters of Nitro Alcohols. J. Am. Chem. Soc. 1946, 68, 12, 2544-2546. DOI: 10.1021/ja01216a036
- [60] Łapczuk-Krygier, A. Single crystal X-ray structure of (Z)-1-bromo-1-nitro-2-phenylethene. Curr. Chem. Lett. 2015, 4, 1, 21-26. DOI: 10.5267/j.ccl.2014.12.001
- [61] Durden, Jr. J. A.; Heywood, D. L.; Sousa, A. A.; Spurr, H. W. Synthesis and microbial toxicity of dinitrobutadienes and related compounds. J. Agric. Food Chem. 1970, 18, 1, 50-56. DOI: 10.1021/jf60167a011
- [62] Shechter, H.; Conrad, F.; Daulton, A. L.; Kaplan, R. B. Orientation in Reactions of Nitryl Chloride and Acrylic Systems. J. Am. Chem. Soc. 1952, 74, 12, 3052-3056. DOI: 10.1021/ja01132a029
- [63] Zvezdova, D.; Stoeva, S.; Aleksiev, D. Structural Features of Certain p‐substituted Phenyl 2‐nitrovinyl Sulfones. J. Chin. Chem. Soc. 2016, 63, 3, 247-253. DOI: 10.1002/jccs.201500408
- [64] Hassner, A.; Kropp, J. E.; Kent, G. J. Addition of nitryl iodide to olefins. J. Org. Chem. 1969, 34, 9, 2628-2632. DOI: 10.1021/jo01261a030
- [65] Szarek, W. A.; Lance, D. G.; Beach, R. L. Addition of nitryl iodide to unsaturated carbohydrate derivatives. Chem. Commun. 1968, 7, 356. DOI: 10.1039/c19680000356
- [66] Berger, K. J.; Levin, M. D. Reframing primary alkyl amines as aliphatic building blocks. Org. Biomol. Chem. 2021, 19, 1, 11-36. DOI: 10.1039/d0ob01807d
- [67] Garming, A.; Redwan, D.; Gelbke, P.; Kern, D.; Dierkes, U. Pyridinderivate aus aliphatischen Nitroverbindungen. Synthese und Reaktionen von Salzen substituierter 1,3-Di-aci-nitro- und 1,5-Di-aci-nitro-3-nitroverbindungen. Justus Liebigs Ann. Chem. 1975, 10, 1744-1764. DOI: 10.1002/jlac.197519751003
- [68] Emmons, W. D.; Cannon, W. N.; Dawson, J. W.; Ross, R. M. Low Temperature Pyrolysis of Boron Trifluoride-Mannich Base Complexes. 2-Nitro-1-alkenes1. J. Am. Chem. Soc. 1953, 75, 8, 1993-1994. DOI: 10.1021/ja01104a508
- [69] E.S. Lipina,E.S.; Perekalin, V.V.; Pavlova, Z.F. SU Patent 253039
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd5d44dc-4a10-4c52-9935-12c4f661248d