PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

3D Finite element model of a blast load in a tunnel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a 3D finite element analysis of the effect caused by a blast inside a reinforced concrete tunnel. The simulated explosion was caused by the crash of a heavy vehicle transporting inflammable material (LPG). The finite element technique was used to analyze the structural problems on the tunnel reinforced concrete structure considering the fire action and the subsequent explosion (blast) effect, incorporating appropriate material models. Through FEM software the tunnel behavior was described with regard to structural safety. Indeed, tunnels must be designed to withstand damage factors, so it is desirable that if such an explosion did occur, the tunnel should be able to return to service in safety as soon as possible with minor repairs. Therefore, following the presented analysis, the most important factors influencing the dynamic response and the damage of the structure could be identified. The simulation involved aspects of thermal analysis and structural problems and the tensions in the structure generated by the effect of temperature caused by the fire and by the blast overpressure were analyzed. Following this approach, the most important factors influencing the dynamic response and damage of structure can be identified and appropriate preventive measures can be designated.
Rocznik
Strony
91--105
Opis fizyczny
Bibliogr. 45 poz., il., tab.
Twórcy
  • Department of Civil, Energy, Environmental and Materials Engineering, University of Reggio Calabria, Italy
  • Department of Civil, Energy, Environmental and Materials Engineering, University of Reggio Calabria, Italy
  • Department of Civil, Energy, Environmental and Materials Engineering, University of Reggio Calabria, Italy
Bibliografia
  • [1] F. Cirianni, G. Leonardi, and F. Scopelliti, “A methodology for assessing the seismic vulnerability of highway systems”, in: AIP Conference Proceedings, vol. 1020, no. 1, American Institute of Physics, pp. 864-871, 2008, DOI: 10.1063/1.2963925.
  • [2] J. Liu, Q. Yan, and J.Wu, “Analysis of blast wave propagation inside tunnel”, Transactions of Tianjin University, vol. 14, no. 5, pp. 358-362, 2008, DOI: 10.1007/s12209-008-0061-3.
  • [3] A. Van den Berg, and J. Weerheijm, “Blast phenomena in urban tunnel systems”, Journal of Loss Prevention in the Process Industries, vol. 19, no. 6, pp. 598-603, 2006, DOI: 10.1016/j.jlp.2006.03.001.
  • [4] D.B. Chang and C.S. Young, “Probabilistic estimates of vulnerability to explosive overpressures and impulses”, Journal of Physical Security, vol. 4, no. 2, pp. 10-29, 2010.
  • [5] M. Buonsanti, G. Leonardi, and F. Scopelliti, “3-D Simulation of shock waves generated by dense explosive in shell structures”, Procedia Engineering, vol. 10, pp. 1554-1559, 2011, DOI: 10.1016/j.proeng.2011.04.259.
  • [6] M. Buonsanti and G. Leonardi, “3-D simulation of tunnel structures under blast loading”, Archives of Civil and Mechanical Engineering, vol. 13, no. 1, pp. 128-134, 2013, DOI: 10.1016/j.acme.2012.09.002.
  • [7] ABAQUS Inc., ABAQUS Example Manual, 2014.
  • [8] ABAQUS Inc., ABAQUS Theory Manual, 2014.
  • [9] ABAQUS Inc., ABAQUS Analysis Manual, 2014.
  • [10] M. Nawar et al., “Numerical analysis of underground tunnels subjected to surface blast loads”, Frattura ed Integrità Strutturale, vol. 15, no. 55, pp. 159-173, 2020, DOI: 10.3221/IGF-ESIS.55.12.
  • [11] T. Lie and V. Kodur, “Thermal and mechanical properties of steel-fibre-reinforced concrete at elevated temperatures”, Canadian Journal of Civil Engineering, vol. 23, no. 2, pp. 511-517, 1996, DOI: 10.1139/l96-055.
  • [12] M.G. Van Geem, J. Gajda, and K. Dombrowski, “Thermal properties of commercially available high-strength concretes”, Cement, Concrete and Aggregates, vol. 19, no. 1, pp. 38-54, 1997, DOI: 10.1520/cca10020j.
  • [13] V. Kodur and M. Sultan, “Effect of temperature on thermal properties of high-strength concrete”, Journal of Materials in Civil Engineering, vol. 15, no. 2, pp. 101-107, 2003, DOI: 10.1061/(ASCE)0899-1561(2003)15:2(101).
  • [14] V.K. Kodur, M. Dwaikat, and M. Dwaikat, “High-temperature properties of concrete for fire resistance modeling of structures”, ACI Materials Journal, vol. 105, no. 5, p. 517, 2008.
  • [15] L. Guo, L. Guo, L. Zhong, and Y. Zhu, “Thermal conductivity and heat transfer coefficient of concrete”, Journal of Wuhan University of Technology, Materials Science Edition, vol. 26, no. 4, pp. 791-796, 2011, DOI: 10.1007/s11595-011-0312-3.
  • [16] V. Kodur, “Properties of concrete at elevated temperatures”, International Scholarly Research Notices, vol. 2014, 2014, DOI: 10.1155/2014/468510.
  • [17] European Committee, “Eurocode2: Design of concrete structures-Part 1-2: General rules-Structural fire design”, ENV 1992-1-2, 1995.
  • [18] J. Zehfuß et al., “Evaluation of Eurocode 2 approaches for thermal conductivity of concrete in case of fire”, Civil Engineering Design, vol. 2, no. 3, pp. 58-71, 2020.
  • [19] UNI 9502:2001 - Analytical fire resistance assessment of reinforced concrete and prestressed concrete structural elements, UNI - Ente Nazionale Italiano di Unificazione, Milano, Italy, 2001.
  • [20] T. Jankowiak and T. Lodygowski, “Identification of parameters of concrete damage plasticity constitutive model”, Foundations of civil and environmental engineering, vol. 6, no. 1, pp. 53-69, 2005.
  • [21] J.S. Tyau, “Finite element modeling of reinforced concrete using 3-dimensional solid elements with discrete rebar”, (Master of Science), Brigham Young University, 2009.
  • [22] Y. Dere and M.A. Koroglu, “Nonlinear FE modeling of reinforced concrete”, International Journal of Structural and Civil Engineering Research, vol. 6, no. 1, pp. 71-74, 2017.
  • [23] F. Lo Monte, N. Kalaba, and P. Bamonte, “On the extension of a plastic-damage model to high temperature and fire”, in IFireSS 2017-2nd International Fire Safety Symposium, Doppiavoce, pp. 703-710, 2017.
  • [24] N. Wahid, T. Stratford, and L. Bisby, “Calibration of concrete damage plasticity model parameters for high temperature modelling of reinforced concrete flat slabs in fire”, Applications of Structural Fire Engineering, Singapore, 2019.
  • [25] A.S. Genikomsou and M.A. Polak, “Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS”, Engineering Structures, vol. 98, pp. 38-48, 2015, DOI: 10.1016/j.engstruct.2015.04.016.
  • [26] Forschungsgesellschaft für Straßen - und Verkehrswesen, Richtlinien für Ausstattung und Betrieb von Tunneln (RABT). Ausgabe, 1985.
  • [27] M. Masellis, “Fire disaster in a motorway tunnel”, Annals of Burns and Fire Disasters, vol. 10, no. 4, pp. 233-240, 1997.
  • [28] R.J. Proctor, “The San Fernando Tunnel explosion, California”, Engineering Geology, vol. 67, no. 1-2, pp. 1-3, 2002.
  • [29] S. Brambilla and D. Manca, “The viareggio LPG railway accident: event reconstruction and modelling”, Journal of Hazardous Materials, vol. 182, no. 1-3, pp. 346-357, 2010, DOI: 10.1016/j.jhazmat.2010.06.039.
  • [30] H. Ingason, Y.Z. Li, and A. Lönnermark, “Runehamar tunnel fire tests”, Fire Safety Journal, vol. 71, pp. 134-149, 2015.
  • [31] Instituut TNO voor Bouwmaterialen en Bouwconstructies, Rapport betreffende de beproeving van het gedrag van twee isolatiematerialenter bescherming van tunnels tegen brand (Rapport B-80-33). Delft, The Netherlands, 1980.
  • [32] B. Hemmatian, E. Planas, and J. Casal, “Fire as a primary event of accident domino sequences: the case of BLEVE”, Reliability Engineering and System Safety, vol. 139, pp. 141-148, 2015, DOI: 10.1016/j.ress.2015. 03.021.
  • [33] K.J. Root, “Development and verification of a confined discretized solid flame model for calculating heat flux on concrete tunnel liners”, 2018.
  • [34] H.R. Weibull, “Pressures recorded in partially closed chambers at explosion of TNT charges”, NYASA, vol. 152, no. 1, pp. 357-361, 1968, DOI: 10.1111/j.1749-6632.1968.tb11987.x.
  • [35] D.R. Curran, “Underground storage of ammunition: experiments concerning accidental detonation in an underground chamber”, Norwegian Defence Construction Service, 1966.
  • [36] A.C. Smith and M.J. Sapko, “Detonation wave propagation in underground mine entries”, Journal of the Mine Ventilation Society of South Africa, vol. 58, pp. 20-25, 2005.
  • [37] M. Silvestrini, B. Genova, and F. Leon Trujillo, “Energy concentration factor. A simple concept for the prediction of blast propagation in partially confined geometries”, Journal of Loss Prevention in the Process Industries, vol. 22, no. 4, pp. 449-454, 2009, DOI: 10.1016/j.jlp.2009.02.018.
  • [38] Center for chemical process safety, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires and BLEVEs. American Institute of Chemical Engineers, 1994.
  • [39] J. Casal and J. M. Salla, “Using liquid superheating energy for a quick estimation of overpressure in BLEVEs and similar explosions”, Journal of Hazardous Materials, vol. 137, no. 3, pp. 1321-1327, 2006, DOI: 10.1016/ j.jhazmat.2006.05.001.
  • [40] B. Genova, M. Silvestrini, and F. L. Trujillo, “Evaluation of the blast-wave overpressure and fragments initial velocity for a BLEVE event via empirical correlations derived by a simplified model of released energy”, Journal of Loss Prevention in the Process Industries, vol. 21, no. 1, pp. 110-117, 2008, DOI: 10.1016/j.jlp.2007.11.004.
  • [41] S. Koneshwaran, “Blast response and sensitivity analysis of segmental tunnel”, PhD Thesis, Queensland University of Technology, 2014.
  • [42] R. Tiwari, T. Chakraborty, and V. Matsagar, “Dynamic analysis of underground tunnels subjected to internal blast loading”, World Congress of Computational Mechanics (WCCM XI), Barcelona. 2014.
  • [43] S. Koneshwaran, D. Thambiratnam, and C. Gallage, “Performance of buried tunnels subjected to surface blast incorporating fluid-structure interaction”, Journal of Performance of Constructed Facilities, 2015, DOI: 10.1061/(ASCE)CF.1943-5509.0000585.
  • [44] M. Zaid and R. Sadique, “The response of rock tunnel when subjected to blast loading: finite element analysis”, Engineering Reports, 2021.
  • [45] D. Hyde, “CONWEP, Conventional Weapons Effects Program”, US Army Engineer Waterways Experiment Station, Vicksburg, MS, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd5c888e-3194-48e5-ab61-d0308dfd8b29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.