PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hammerstein Nonlinear Active Noise Control with the Filtered-Error LMS Algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Active Noise Control (ANC) of noise transmitted through a vibrating plate causes many problems not observed in classical ANC using loudspeakers. They are mainly due to vibrations of a not ideally clamped plate and use of nonlinear actuators, like MFC patches. In case of noise transmission though a plate, nonlinerities exist in both primary and secondary paths. Existence of nonlinerities in the system may degrade performance of a linear feedforward control system usually used for ANC. The performance degradation is especially visible for simple deterministic noise, such as tonal noise, where very high reduction is expected. Linear feedforward systems in such cases are unable to cope with higher harmonics generated by the nonlinearities. Moreover, nonlinearities, if not properly tackled with, may cause divergence of an adaptive control system. In this paper a feedforward ANC system reducing sound transmitted through a vibrating plate is presented. The ANC system uses nonlinear control filters to suppress negative effects of nonlinearies in the system. Filtered-error LMS algorithm, found more suitable than usually used Filtered-reference LMS algorithm, is employed for updating parameters of the nonlinear filters. The control system is experimentally verified and obtained results are discussed.
Rocznik
Strony
197--203
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
autor
  • Institute of Automatic Control, Silesian University of Technology Akademicka 16, 44-100 Gliwice, Poland
  • Institute of Automatic Control, Silesian University of Technology Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • 1. Bruant I., Gallimard L., Nikoukar S. (2010), Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm, Journal of Sound and Vibration, 329, 10, 1615-1635.
  • 2. Das D.P., Panda G. (2004), Active mitigation of nonlinear noise Processes using a novel filtered-s LMS algorithm, IEEE Transactions on Speech and Audio Processing, 12, 3, 313-322,
  • 3. El Kadiri M., Benamar R., White R.G. (1999), The non-linear free vibration of fully clamped rectangular plates: second non-linear mode for various plate aspect ratios, Journal of Sound and Vibration, 228, 2, 333-358.
  • 4. Elliott S. (2001), Signal Processing for Active Control, Academic Press, London.
  • 5. Fahy F., Gardonio P. (2007), Sound and Structural Vibration, Second edition, Elsevier, Oxford.
  • 6. Górski P., Kozupa M. (2012), Variable Sound Insulation Structure with MFC Elements, Archives of Acoustics, 37, 1, 115-120.
  • 7. Hansen C.H., Snyder S.D. (1997), Active Control of Noise and Vibration, E & FN Spon, London.
  • 8. Kedziora P., Muc A. (2012), Optimal shapes of PZT actuators for laminated structures subjected to displacement or eigenfrequency constraints, Composite Structures, 94, 3, 1224-1235.
  • 9. Kuo S.M., Morgan D.R. (1996), Active Noise Control Systems, John Wiley & Sons, Inc., New York.
  • 10. Leniowska L., Kos P. (2009), Self-tuning control with regularized RLS algorithm for vibration cancellation of a circular plate, Archives of Acoustics, 34, 4, 613-624.
  • 11. Leniowska L. (2011), An Adaptive Vibration Control Procedure Based on Symbolic Solution of Diophantine Equation, Archives of Acoustics, 36, 4, 901-912.
  • 12. Mazur K., Pawełczyk M. (2011a), Active noise vibration control using the filtered-reference LMS algorithm with compensation of vibrating plate temperature variation, Archives of Acoustics, 36, 1, 65-76.
  • 13. Mazur K., Pawełczyk M. (2011b), Feed-forwardcompensation for nonlinearity of vibrating plate as thesound source for active noise control, Mechanics and Control, 30, 3, 146-150.
  • 14. Mazur K., Pawełczyk M. (2012), Nonlinear Active Noise Control of sound transmitted through aplate, 59th Open Seminar on Acoustics, Boszkowo 10-12.09.2012, 159-162.
  • 15. Pawełczyk M. (2003), Multiple input-multiple output adaptive feedback control strategies for the active headrest system: design and real-time implementation, International Journal of Adaptive Control and Signal Processing, 17, 10, 785-800.
  • 16. Pietrzko S.J. (2009), Contributions to Noise and Vibration Control Technology, AGH University of Science and Technology Press, Kraków.
  • 17. Saha K.N., Misra D., Ghosal S., Pohit G. (2005), Nonlinear free vibration analysis of square plates with various boundary conditions, Journal of Sound and Vibration, 287, 1031-1044.
  • 18. Sodano H.A., Park G., Inman D.J. (2004), An investigation into the performance of macro-fiber composites for sensing and structural vibration applications, Mechanical Systems and Signal Processing, 18, 683-697.
  • 19. Stuebner M., Smith R.C., Hays M., Oates W.S. (2009), Modeling the nonlinear behavior of Macro Fiber Composite actuators, Behavior and Mechanics of Multifunctional Materials and Composites 2009, Proceedings of the SPIE, 7289, 728913-728918.
  • 20. Tan L., Jiang J. (2001), Adaptive Volterra filters for active control of nonlinear noise processes, IEEE Transactions on Signal Processing, 49, 8, 1667-1676.
  • 21. Tawfik M., Baz A. (2006), Experimental and Spectral Finite Element Study of Plates with Shunted Piezoelectric Patches, International Journal of Acoustics and Vibration, 9, 2, 87-97.
  • 22. Tu Y., Fuller C.R. (2000), Multiple reference feed forward Active Noise Control. Part II: Reference preprocessing and experimental results, Journal of Sound and Vibration, 233, 5, 761-774.
  • 23. Wrona S., Pawełczyk M. (2013), Optimal placement of actuators and sensors for active noise-vibration control of flexible structures using memetic algorithms, XVI International Conference on Noise Control “Noise Control 2013”, 26-29 May 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd5c33bf-18f6-4206-b327-fee509872799
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.