PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorbents for Cr(VI) Uptake from Contaminated Water: Part I Activated Carbon

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Adsorbenty do wychwytywania Cr(VI) z zanieczyszczonej wody: Część I Węgiel aktywowany
Języki publikacji
EN
Abstrakty
EN
Chromium in its hexavalent form (Cr(VI)) poses a significant threat to the environment and human health due to its toxicity, mobility, and bioaccumulation capacity. This paper presents a study on the removal of Cr(VI) from aqueous solutions using three types of activated carbon: BIOMUS PYL 22 (PAC), NORIT 1240 (GAC), and SORBOTECH LGCO (GAC). The effects of key process parameters, such as contact time, stirring speed, pH, temperature, initial Cr(VI) concentration, and sorbent dosage, on adsorption efficiency were analyzed. The results indicate that powdered activated carbon (PAC) exhibits the highest Cr(VI) removal efficiency, reaching 80–90% under optimal conditions. Cr(VI) adsorption is most effective at acidic pH (~2) and elevated temperatures (40– 60°C), although high removal efficiencies were also achieved at room temperature. The Langmuir and Freundlich isotherm models confirm the favorable nature of the adsorption process. These results provide a basis for designing efficient and economically viable processes for the removal of Cr(VI) from industrial wastewater.
PL
Chrom w formie sześciowartościowej (Cr(VI)) stanowi poważne zagrożenie dla środowiska i zdrowia ludzkiego ze względu na swoją toksyczność, ruchliwość i zdolność do bioakumulacji. W niniejszym artykule przedstawiono badanie usuwania Cr(VI) z roztworów wodnych przy użyciu trzech rodzajów węgla aktywnego: BIOMUS PYL 22 (PAC), NORIT 1240 (GAC) i SORBOTECH LGCO (GAC). Przeanalizowano wpływ kluczowych parametrów procesu, takich jak czas kontaktu, szybkość mieszania, pH, temperatura, początkowe stężenie Cr(VI) i dawka sorbentu, na wydajność adsorpcji. Wyniki wskazują, że sproszkowany węgiel aktywny (PAC) wykazuje najwyższą wydajność usuwania Cr(VI), sięgającą 80–90% w optymalnych warunkach. Adsorpcja Cr(VI) jest najskuteczniejsza w kwaśnym pH (~2) i podwyższonej temperaturze (40–60°C), chociaż wysoką wydajność usuwania osiągnięto również w temperaturze pokojowej. Modele izoterm Langmuira i Freundlicha potwierdzają korzystny charakter procesu adsorpcji. Wyniki te stanowią podstawę do projektowania wydajnych i ekonomicznie opłacalnych procesów usuwania Cr(VI) ze ścieków przemysłowych.
Rocznik
Strony
67--76
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
autor
  • Department of Environmental Engineering, Faculty of Civil Engineering and Resource Management, AGH University of Krakow, Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • 1. Abdullah, N., Yusof, N., Lau, W. J., Jaafar, J., and Ismail, A. F. (2019). Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Industrial Eng. Chem. 76, 17–38. ISSN 1226-086X. doi:10.1016/j.jiec.2019.03.029
  • 2. Allen, S. J., Whitten, L., & McKay, G. (1998). The production and characterization of activated carbons: A review. Developments in Chemical Engineering and Mineral Processing, 6(5), 231–262.
  • 3. Atès, N., and Uzal, N. (2018). Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration. Environ. Sci. Pollut. Res. Int. 25 (22), 22259–22272. doi:10.1007/s11356-018-2345-z
  • 4. Babel, S., Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 97(1–3), 219–243.
  • 5. Bashir, A., Malik, L. A., Ahad, S., Manzoor, T., Bhat, M. A., Dar, G. N., et al. (2019). Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 17, 729–754. doi:10.1007/s10311-018-00828-y
  • 6. Cheremisinoff, P. N., & Angelo, C. M. (1980). Carbon adsorption applications. In Carbon Adsorption Handbook (pp. 1–54). Ann Arbor Science Publishers, Inc.
  • 7. Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30(1), 38–70.
  • 8. El-Sikaily, A., El Nemr, A., Khaled, A., & Abdelwehab, O. (2007). Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. Journal of Hazardous Materials, 148(1–2), 216–228. https://doi.org/10.1016/j.jhazmat.2007.02.052
  • 9. EPA. (2022). Chromium in Drinking Water. U.S. Environmental Protection Agency. Retrieved from https://www.epa.gov/dwstandardsregulations/chromium-drinking-water
  • 10. Gode F., Pehlivan E., Sorption of Cr(III) onto chelating b-DAEG–sporopollenin and CEP–sporopollenin resins. (2007) Bioresour. Technol., 904-911
  • 11. Gupta, V. K., Park, K. T., Sharma, S., & Mohan, D. (1999). Removal of chromium(VI) from electroplating industry wastewater using bagasse flyash—a sugar industry waste material. Environmentalist, 19(2), 129–136.
  • 12. Gupta, V. K., Srivastava, S. K., & Mohan, D. (1997). Design parameters for fixed bed reactors of activated carbon developed from fertilizer waste for the removal of some heavy metal ions. Waste Management, 17(8), 517–522.
  • 13. Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. (2018). Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology, 2018. https://doi.org/10.1155/2018/2568038
  • 14. Kapelula V.L., Luis P., (2024) Removal of heavy metals from wastewater using reverse osmosis. Front. Chem. Eng., Sec. Materials Process Engineering, Volume 6 doi.org/10.3389/fceng.2024.1334816
  • 15. Kozlowski C.A., Walkowiak W., (2002) Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes, Water Res. 36, 4870–4876.
  • 16. Kumar, A., & Riyazuddin, P. (2013). Chromium removal from water and wastewater by sorption using agricultural wastes: A review. Environmental Technology Reviews, 2(1), 1–14.
  • 17. Majumder, R., Sheikh, L., Naskar, A., Vineeta, M., Mukherjee, M., & Tripathy, S. (2017). Depletion of Cr(VI) from aqueous solution by heat-dried biomass of a newly isolated fungus Arthrinium malaysianum: A mechanistic approach. Scientific Reports, 7, 11254.
  • 18. Matis K.A., Mavros P., (1991) Recovery of metals by ion flotation from dilute aqueous solutions, Sep. Purif. Meth. 20 1–48.
  • 19. Mohammadi T., Moheb A., Sadrzadeh M., Razmi A., (2005) Modeling of metal ion removal from wastewater by electrodialysis, Sep. Purif. Technol. 41 (1) 73–82.
  • 20. Mohan, D., Pittman, C. U. Jr. (2006). Activated carbons and low-cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137(2), 762–811.
  • 21. Mohan, D., Singh, K. P. (2005). Granular activated carbon. In J. Lehr & J. Keeley (Eds.), Water Encyclopedia: Domestic, Municipal, and Industrial Water Supply and Waste Disposal. Wiley/Interscience.
  • 22. Mui, E. L. K., Ko, D. C. K., & McKay, G. (2004). Production of active carbons from waste tyres—a review. Carbon, 42, 2789–2805.
  • 23. Ozaki H., Sharma K., Saktaywin W., (2002) Performance of an ultra-lowpressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters, Desalination 144, 287–294
  • 24. Petruzzelli D., Passino R., Tiravanti G., (1995) Ion exchange process for chromium removal and recovery from tannery wastes, Ind. Eng. Chem. Res. 34 2612–2617.
  • 25. Pollard, S. J. T., Fowler, G. D., Sollars, C. J., & Perry, R. (1992). Low-cost adsorbents for waste and wastewater treatment: A review. Science of the Total Environment, 116, 31–52.
  • 26. Qasem, N. A. A., Mohammed, R. H., and Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean. Water 4, 36. doi:10.1038/s41545-021-00127-0
  • 27. Rengaraj S., Yeon K.-H., Moon S.-H. (2001) Removal of chromium from water and wastewater by ion exchange resins, J. Hazard. Mater. 87 (1–3) 273–287.
  • 28. Roundhill D.M., Koch H.F., (2002) Methods and techniques for the selective extraction and recovery of oxoanions, Chem. Soc. Rev. 31 60–67.
  • 29. Saleh, T. A., Mustaqeem, M., and Khaled, M. (2022). Water treatment technologies in removing heavy metal ions from wastewater: a review. Environ. Nanotechnol. Monit. Manag. 17, 100617. ISSN 2215-1532. doi:10.1016/j.enmm.2021.100617
  • 30. Saranraj, P., Sujitha, D. (2013). Microbial bioremediation of chromium in tannery effluent: A review. International Journal of Microbiological Research, 4(3), 305–320.
  • 31. Sarin, V., & Pant, K. K. (2006). Removal of chromium from industrial waste by using eucalyptus bark. Bioresource Technology, 97(1), 15–20.
  • 32. Sepehr, M. N., Zarrabi, M., Amrane, A., & Samarghandi, M. R. (2013). Removal of Cr(III) from model solutions and a real effluent by Phanerochaete chrysosporium isolated living microorganism: Equilibrium and kinetics. Desalination and Water Treatment, 51(28–30), 5627–5637.
  • 33. Shaalan H., Sorour M., Tewfik S., (2001) Simulation and optimization of a membrane system for chromium recovery from tanning wastes, Desalination 14 315–324.
  • 34. Singh, S. S., & Goyal, D. (2010). Removal of Cr(VI) from aqueous solution by fungal biomass. Engineering in Life Sciences, 10(5), 480–485.
  • 35. Tiravanti G., Petruzzelli D., Passino R. (1997), Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Sci. Technol. 36 (1997) 197–207.
  • 36. USEPA. (2021). Technical Fact Sheet: Chromium VI. U.S. Environmental Protection Agency. https://www.epa.gov/factsheets/technical-fact-sheet-chromium-vi
  • 37. Wang Y., Peng C., Padilla-Ortega E., Robledo-Cabrera A., López-Valdivieso A. (2020). Cr(VI) adsorption on activated carbon: Mechanisms, modeling and limitations in water treatment. Journal of Environmental Chemical Engineering Volume 8, Issue 4
  • 38. WHO. (2020). Chromium in drinking-water: Background document for development of WHO guidelines for drinking-water quality. World Health Organization. https://www.who.int/publications/i/item/WHO-HEP-ECHWSH-2020.6
  • 39. Xiang, H., Min, X., Tang, C. J., Sillanpää, M., and Zhao, F. (2022). Recent advances in membrane filtration for heavy metal removal from wastewater: a mini review. J. Water Process Eng. 49, 103023. ISSN 2214-7144. doi:10.1016/j.jwpe.2022.103023
  • 40. Yang, J., Yu, M., & Chen, W. (2015). Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: kinetics, equilibrium and thermodynamics. Journal of Industrial and Engineering Chemistry, 21, 414–422. https://doi.org/10.1016/j.jiec.2014.03.040
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd546bf0-7eed-4d7a-8f3d-5b6c3b6c9760
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.