PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiobiokoniugaty znakowane emiterami elektronów Augera w celowanej terapii radionuklidowej

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Radiobioconiugates labeled with Auger electron emitters in targeted radionuclide therapy
Języki publikacji
PL
Abstrakty
EN
In contrast to the radiation therapy methods, that use an external ion beam source, the internal radiotherapy is performed by the direct administration of radionuclides conjugated to a targeting vector. Crucial criteria for the use of radiopharmaceuticals at a selective localization and retention in the tumor lesion are biological or biochemical differences between tumor and non-tumor tissue. Auger electron emitters that can target cancer cells are an attractive agents for internal radiation therapy. Besides of a emitters, radionuclides that decay with the emission of very low energy Auger electrons are well suited for the treatment of small tumors, micrometastases or residual tumor after surgical resection of a primary lesion. In contrast to a radiation, however, Auger emitters have low toxicity when decaying outside the cell during blood transport and they are therefore interesting candidates for targeted radionuclide therapy. However, due to nanometers range of Auger electrons the challenge is to target cancer cells specifically and achieve intracellular and intranuclear uptake for maximum DNA damage. So far, no system has been developed to allow for selective delivery of the Auger electron emitter to the cancer cell and next delivering it to cell nucleus, near the DNA strand. An overview of Auger radiation therapy approaches of the past decade shows several research directions and various targeting vehicles. The latter include small molecules, aptamers, hormones, halogenated nucleotides, peptides oligonucleotides and monoclonal antibodies and their fragments. In present article we discuss the basic principles of Auger electron therapy as compared with targeted α and β radionuclide therapy, characteristic of used Auger emitters and briefly the main advantages and disadvantages of the different targeting modalities that are under investigation.
Rocznik
Strony
699--733
Opis fizyczny
Bibliogr. 107, rys., tab., wykr.
Twórcy
  • Instytut Chemii i Techniki Jądrowej, ul. Dorodna 16, 03-195 Warszawa
  • Instytut Chemii i Techniki Jądrowej, ul. Dorodna 16, 03-195 Warszawa
Bibliografia
  • [1] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, CA. Cancer J. Clin., 2018, 68, 394.
  • [2] A. Świeboda-Sadlej, Chir. Pol., 2011, 13, 59.
  • [3] World Health Organization, Technical Report 492, Genewa. 1972.
  • [4] G. Kramer-Marek J. Capala, Tumor Biol., 2012, 33, 629.
  • [5] O. Desouky, N. Ding, G. Zhou, J. Radiat. Res. Appl. Sci., 2015, 8, 247.
  • [6] P. Wardman, Br. J. Radiol., 2009, 82, 89.
  • [7] M.V. Sokolov, J.S. Dickey, W.M. Bonner, O.A. Sedelnikova, Cell cycle, 2007, 6, 2210.
  • [8] C. Kratochwil et al., J. Nucl. Med., 2016, 57, 1941.
  • [9] A.I. Kassis, J. Nucl. Med., 2003, 44, 1479.
  • [10] F. Buchegger, F. Perillo-Adamer, Y.M. Dupertuis, A. Bischof Delaloye, Eur. J. Nucl. Med. Mol. Imaging, 2006, 33, 1352.
  • [11] A. Ku, V.J. Facca, Z. Cai, R. M. Reilly, EJNMMI Radiopharm. Chem., 2019, 4, 1.
  • [12] H. Lundqvist, В. Stenerlöw, L. Gedda, Targeted Radionuclide Tumor Therapy, Springer, 2008.
  • [13] H. Albar, in Use of Gamma Radiation Techniques in Peaceful Applications, 2019.
  • [14] S.M. Larson, J.A. Carrasquillo, N.K.V. Cheung, O.W. Press, Nat. Rev. Cancer, 2015, 15, 347.
  • [15] V.A. Shepherd, Curr. Top. Dev. Biol., 2006, 75, 171.
  • [16] D.S. Chang, F.D. Lasley, I.J. Das, M.S. Mendonca, J.R. Dynlacht, Basic Radiothererpay Physics Biology, Springer, 2014.
  • [17] W. Graboń, D. Otto-Ślusarczyk, A. Barańczyk-Kuźma, Postępy Med. Hig. Dosw. (Online), 2018, 72, 481.
  • [18] A.I. Kassis S.J. Adelstein, J. Nucl. Med., 2005, 46, 1.
  • [19] S. Aghevlian, A.J. Boyle, R.M. Reilly, Adv. Drug Deliv. Rev., 2017, 109, 102.
  • [20] J.P. Pouget, C. Lozza, E. Deshayes, V. Boudousq, I. Navarro-Teulon, Front. Med., 2015, 2, 12.
  • [21] A. Stepień, M. Izdebska, A. Grzanka, Postepy Hig. Med. Dosw. (Online), 2007, 61, 420.
  • [22] Z. Cai et al., Nucl. Med. Biol., 2016, 43, 818.
  • [23] B. Cornelissen K. A Vallis, Curr. Drug Discov. Technol., 2010, 7, 263.
  • [24] B.J. Hicke et al., J. Nucl. Med., 2006, 47, 668.
  • [25] A.P. Kiess et al., J. Nucl. Med., 2015, 56, 1401.
  • [26] L.Y. Xue, N. J. Butler, G. M. Makrigiorgos, S. J. Adelstein, A. I. Kassis, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 13765.
  • [27] H.A. Sawal, K. Asghar, M. Bureik, N. Jalal, Onco. Targets. Ther., 2017, 10, 3925.
  • [28] M. Wideł, W. Przybyszewski, J. Rzeszowska-Wolny, Postepy Hig. Med. Dosw. (Online), 2009, 63, 377.
  • [29] A.B. Heeran, H P. Berrigan, J. O’Sullivan, Radiat. Res., 2019, 192, 668.
  • [30] C. Müller et al., Eur. J. Nucl. Med. Mol. Imaging, 2019, 46, 1919.
  • [31] M.C. Cantone C. Hoeschen, Radiation Physics for Nuclear, SPRINGER, 2011.
  • [32] S.M. Qaim, J. Radioanal. Nucl. Chem., 2015, 305, 233.
  • [33] J. Fonslet et al., Phys. Med. Biol., 2018, 63, 1.
  • [34] E. Aluicio-Sarduy et al., Sci. Rep., 2019, 9, 1,
  • [35] M.S. Uddin, B. Scholten, А. Hermanne, S. Sudár, H.H. Coenen, S.M. Qaim, Appl. Radiat. Isot., 2010, 68, 2001.
  • [36] A. Hyatt, Advancing nuclear medicine through innovation - National Research Council Institute of Medicine of the National Academies* The National Academies Press, Joseph Henry Press; 2009.
  • [37] A.S. Sobolev, Front. Pharmacol., 2018, 9, 1.
  • [38] A.-M. Chacko, J. Mikitsh, X. Ye, J. Label. Compd. Radiopharm., 2013, 56, 239.
  • [39] H. Thisgaard, B.B. Olsen, J.H. Dam, P. Bollen, J. Mollenhauer, P.F. Høilund-Carlsen, J. Nucl. Med., 2014, 55, 1311.
  • [40] V. Izquierdo-Stochez et al., Molecules, 2018, 23, 1.
  • [41] E. Koumarianou et al., Nucl. Med. Biol., 2014, 41, 441.
  • [42] M.F. bin Othman et al., Nucl. Med. Biol., 2020, 80. 57.
  • [43] M.F. bi. Othman, N.R. Mitry, V.J. Lewington, P.J. Blower, S.Y.A. Terry, Nucl. Med. Biol., 2017, 46, 12.
  • [44] J. Kotzerke et al., PLoS One, 2014, 9, 8.
  • [45] C. Chan, H. Fonge, K. Lam, R.M. Reilly, Nucl. Med. Biol., 2020, 80, 37.
  • [46] L. Song, N. Falzone, K.A. Vallis, Int. J. Radiat. Biol., 2016, 92, 716.
  • [47] Z. Cai et al., Nucl. Med. Biol., 2016, 43, 818.
  • [48] C. Chan, Z. Cai, R. M. Reilly, Pharm. Res., 2013, 30, 1999.
  • [49] S. Aghevlian, Y. Lu, M.A. Winnik, D.W. Hedley, R.M. Reilly, Mol. Pharm., 2018, 15, 1150.
  • [50] K.A. Vallis et al., Am. J. Nucl. Med. Mol. Imaging, 2014, 4, 181. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/24753984%0Ahttp://www.pubmedcentral.nih.gov/articler ender.fcgi?artid=PMC3992211.
  • [51] M.R. Gill et al., Nanoscale, 2018, 10, 10596.
  • [52] G.S. Limouris et al., Clin. Nucl. Med., 2016, 41, 194.
  • [53] A.A. Rosenkranz et al., Front. Pharmacol., 2018, 9, 1.
  • [54] T.S. Karyagina et al., Front. Pharmacol., 2020, 11, 1.
  • [55] C. Gao, J.V. Leyton, A.D. Schimmer, M. Minden, R.M. Reilly, Appl. Radiat. Isot., 2016, 110, 1.
  • [56] T.A. Slastnikova et al., Int. J. Nanomedicine, 2017, 12, 395.
  • [57] E.J. Razumienko, J.C. Chen, Z. Cai, C. Chan, R.M. Reilly, J. Nucl. Med., 2016, 57, 444.
  • [58] H.K. Li et al., Cancer Biother. Radiopharm., 2015, 30, 349.
  • [59] C. Panosa et al., Nucl. Med. Biol., 2015, 42, 931.
  • [60] G. Ngo Ndjock Mbong et al., Mol. Pharm., 2015, 12, 1951.
  • [61] A. Zereshkian, J.V. Leyton, Z. Cai, D. Bergstrom, M. Weinfeld, R.M. Reilly, Nucl. Med. Biol., 2014, 41, 377.
  • [62] N. Pit-Taskar et al., J. Nucl. Med., 2019, 60, 12.
  • [63] J.A. Violet, G. Farrugia, C. Skene, J. White, P. Lobachevsky, R. Martin, Int. J. Radiat. Biol., 2016, 92, 707.
  • [64] J.H. Kim et al., J. Radiat. Oncol., 2013, 2, 7.
  • [65] A. Kies, J. Nucl. Med., 2015, 59, 401.
  • [66] H. Lee et al., J. Nucl. Med., 2019.
  • [67] C.J. Shen et al., Theranostics, 2020, 10, 2888.
  • [68] S.J. Adelstein, A.I. Kassis, L. Bodei, G. Mariani, Cancer Biother. Radiopharm., 2003, 18, 301.
  • [69] H. Thisgaard et al., Theranostics, 2016, 6, 2278.
  • [70] M.R. Jackson et al., Cancer Res., 2019, 79, 4627.
  • [71] K. Onizuka et al., Nucleic Acids Res., 2019, 47, 6578.
  • [72] S.K. Sahu, Z.P. Kortylewicz, J. Baranowska-Kortylewicz, R.A. Taube, S.J. Adelstein, A.I. Kassis, Radiat. Res., 1997, 147, 401.
  • [73] M. Crul, R.C.A.M. van Waardenburg, J.H. Beijnen, J.H.M. Schellens, Cancer Treat. Rev., 2002, 28, 291.
  • [74] R.W. Howell et al., Radiat. Res., 1994, 140, 55.
  • [75] P. Garnuszek I. Licińska, Nucl. Med. Rev., 2002, 5, 145.
  • [76] J. B. Chaires, J.E. Herrera, M.J. Waring, Biochemistry, 1990, 29, 6145.
  • [77] L. M. Ickenstein, K. Edwards, S. Sjöberg, J. Carlsson, L. Gedda, Nucl. Med. Biol., 2006, 33, 773.
  • [78] A. Fondell, K. Edwards, L.M. Ickenstein, S. Sjöberg, J. Carlsson, L. Gedda, Eur. J. Nucl. Med. Mol. Imaging, 2010, 37, 114.
  • [79] J.-P. Pouget et al., Radiat. Res., 2008, 170, 192.
  • [80] A. Shinohara et al., Ann. Nucl. Med., 2018, 32, 114.
  • [81] W.H.Y. Roa et al., Technol. Cancer Res. Treat., 2013, 12, 79.
  • [82] Z.P. Kortylewicz, D.W. Coulter, G. Han, J. Label. Compd. Radiopharm., 2020.
  • [83] M.C. Louie M.B. Sevigny, Am. J. Cancer Res., 7, 8, 1617-1636, 2017.
  • [84] T. Fischer, K. Schomäcker, H. Schicha, Int. J. Radiat. Biol., 84, 12, 1112-1122, 2008.
  • [85] L. Giovanella, Nuclear Medicine Therapy: Side Effects Complications. Springer, 2019.
  • [86] A. Capello, E. Krenning, B. Bernard, J.C. Reubi, W. Breeman, M. De Jong, Eur. J. Nucl. Med. Mol. Imaging, 2005, 32, 1288.
  • [87] A. Capello, E. Krenning, W. Breeman, B. Bernard, M. de Jong, J. Nucl. Med., 2003, 44, 98.
  • [88] C. Santos-Cuevas et al., Int. J. Pharm., 2009, 375, 75.
  • [89] N. Jiménez-Mancilla et al., J. Label. Compd. Radiopharm., 2013, 56, 663.
  • [90] T.J.P. Jansen et al., J. Label. Compd. Radiopharm., 2019, 62, 656.
  • [91] P.S. Marek Z. Wojtukiewicz, E. Sierko, Onkol. w Prakt. Klin. Via Medica, 2010, 6, 217.
  • [92] A.M.U. Pudełko, R. Partyka, I. Jałowiecka, M. Żerdziński, Ann. Acad. Med. Siles., 2014, 68, 457.
  • [93] L. Laviola, A. Natalicchio, F. Giorgino, Curr. Pharm. Des., 2007, 13, 663.
  • [94] R.M. Reilly et al., J. Nucl. Med., 2000, 41, 429.
  • [95] Z. Cai, Z. Chen, K.E. Bailey, D.A. Scollard, R.M. Reilly, K.A. Vallis, J. Nucl. Med., 2008, 49, 1353.
  • [96] K.E. Bailey et al., J. Nucl. Med., 2007, 48, 1562.
  • [97] R.M. Reilly, P. Chen, J. Wang, D. Scollard, R. Cameron, K.A. Vallis, J. Nucl. Med., 2006, 47,1023.
  • [98] S. Aghevlian, A.J. Boyle, R.M. Reilly, Adv. Drug Deliv. Rev., 2017, 109, 102.
  • [99] C.L. Arteaga, M.X. Sliwkowski, C.K. Osborne, E.A. Perez, F. Puglisi, L. Gianni, Nat. Rev. Clin. Oncol., 2012, 9, 16.
  • [100] J. Baselga J. Albanell, Ann. Oncol., 2001, 12, 35.
  • [101] D.L. Costantini, M. Hu, R.M. Reilly, Cancer Biother. Radiopharm., 2008, 23, 3.
  • [102] D.L. Costantini, C. Chan, Z. Cai, K. A. Vallis, R. M. Reilly, J. Nucl. Med., 2007, 48, 1357.
  • [103] C. Chan, Z. Cai, R. Su, R.M. Reilly, Nucl. Med. Biol., 2010, 37, 105.
  • [104] D.L. Costantini, K. Bateman, K. McLarty, K. A. Vallis, R.M. Reilly, J. Nucl. Med., 2008, 49, 1498.
  • [105] J.M. Du Manoir et al., Clin. Cancer Res., 2006, 12, 904.
  • [106] Y. Lu et al., Biomacromolecules, 2014, 15, 2027.
  • [107] B. Hoang, R.M. Reilly, C. Allen, Biomacromolecules, 2012, 13, 455.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd5361fb-8e63-49f5-bd91-d86e1046e368
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.