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Abstract. In this paper, we study and analyse the variations of velocity profiles for differ-

ent values of the Reynolds number, Eckert number, Prandtl number and Hartmann number 

in the Magneto Hydrodynamics Jeffery-Hamel flow with heat transfer in Eyring-Powell 

fluid in both divergent and convergent channels. The Differential Transform Method 

(DTM) is used to obtain an analytical solution of the Jeffery Hamel flow problem and to 

determine the velocity profiles of the fluid flow. Finally, the efficiency of DTM has been 

shown, and the results have been validated by comparing the obtained results with the  

numerical results (fourth order RK method) in both convergent and divergent channels. 
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Nomenclature 

p Pressure E0 Electromagnetic induction 

k Conductivity of the thermal ν Kinematic viscosity 

ρ Density M Magnetic field 

T Temperature θ Half-angle between the two plates 

Re Reynolds number  Ha Hartmann number 

1. Introduction 

The study on fluid flow between two inclined planes is a most important prob-

lem in the field of fluid flow problems in many fields of Engineering and Sciences. 

In the mid of nineteen century, Jeffery [1] and Hamel [2] derived a mathematical 

formulation for the fluid flow between two unparalled walls and studied the behav-

iour of a velocity profile and the effect of an angle on fluid flow in both divergent 



R. Meher, N.D. Patel 58 

and convergent channels. Due its major importance in the field industry applica-

tions, Powell-Earring introduced a new model in 1944-45, which is now known as 

the Eyring-Powell model. Many investigators have examined the Jeffery Hamel 

Flow from different points of view. Akulenko et al. [3] analysed JH flow in a con-

vergent channel with  different values of Reynolds numbers while Makinde and 

Mhone [4] and Esmaili et al. [5] analysed itthrough semi-numerical approach i.e. 

Hermite-Padé approximation and the Adomian Decomposition Method. Rivkind et 

al. [6] computed it numerically with a finite number of outlets to infinity. Egashira, 

Fujikawa et al. [7] studied the Microscopic and low Reynolds number flows between 

two intersecting permeable walls while Rana, Shukla et al. [8] analytically predicted 

the multiple solutions for MHD Jeffery-Hamel flow and heat transfer by utilizing 

the KKL nanofluid modelSimilarly, many investigators have taken a keen involve-

ment in various analytical and numerical methods like the Adomain Decomposition 

Method, the Perturbation Method, the Homotopy Analysis Method, the Modified 

Sumudu Transform Method and the Traveling Wave Transformation Method in the 

study of fluid flow problems and other fluid mechanics problems that are inherently 

non-linear. In fact, in most of the cases such problems do not possess numerical  

solutions so an analytical solution also plays an important role in the study of non- 

linear differential equations. Muhmmad [9] used DTM and analysed the effect of the 

magnetic field between two parallel walls for unsteady double phases of nano-fluid 

flow and heat transfer. Zhou and Pukchov [10] and Hossein et al. [11] applied 

DTM and solved the electric circuit analysis and the non-linear Gas Dynamics and 

Klein-Gordon equations arising in fluid flow problems. Patil and Khambayat [12] 

used DTM for a linear differential equation while Chen and Ho [13] and Ayaz [14] 

extended the method for a non-linear system of an ordinary and partial differential 

equation. At a later period of time, Shahmorad et al. [15] and Farshid [16, 17]  

extended the applications of DTM to a fractional order integro-differential equation 

with non-vocal boundary conditions and also to a three-dimensional fuzzy partial 

differential equations. Patel and Meher [18-20] used DTM for the solution of  

Kolmogrove-Petrovskii-Piskunov equation and the porous medium equation and 

validated the obtained results by comparing with the exact solution. Rana, Shukla 

et al. [21] used the Homotopy analysis method for predicting multiple solutions  

in the channel flow with stability analysis. 

In this paper, the MHD Jeffery-Hamel fluid flow in Eyring-Powell fluid between 

two non-parallel plates with heat transfer is considered to analyse the effects of the 

Eckert number, Prandtl number, Reynolds number and the Hartmann number on 

velocity profiles of fluid flow. The Differential Transform Method is used to study 

the variation of velocity profiles during MHD Jeffery Hamel flow for different  

values of Eckert number, Prandtl number, Reynolds number and the Hartmann 

number in both divergent and convergent channels and also checked the accuracy 

and the validity of the obtained results by comparing the obtained results with  

the results obtained by numerical results (fourth order RK method). 
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2. Mathematical formulation and solution of the problem  

For Eyring fluid, the extra - stress tensor is given as, 
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where 
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tr K   and ( )tK V V     is kinematical tensor,   and t are the 

characteristics of the Eyring-Powell model and time, t has the dimension of 
1(time)  and μs is shear viscosity of Eyring-Powell fluid. By ignoring higher order 

terms in expansion of the sine hyperbolic function of eq. (1), we get 
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The shears of the Eyring-Powell Model in polar coordinates are defined as follows: 
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where 
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The scalar momentum equations in r and α directions are defined as follows: 
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where p is the pressure term of the Eyring-Powell model. 

Consider an Eyring-Powell fluid flow between two inclined planes having  

angles 2α and E0 electromagnetic induction as shown in Figure 1. The fluid flow 

can be considered as a convergent/divergent channel according to the angle α is 

negative/positive respectively. For fluid flow, it is assumed that there is no move-
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ment of flow in a vertical direction i.e. flow is purely radial in motion and M is the  

external magnetic field action on flow. In addition, there is a constant temperature 

T0 near the plates. With all the above conditions, the continuity, momentum and 

heat transfer equations can be defined in polar coordinates as: 
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with boundary conditions: max
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 at the midline of the 

flow, ( , ) 0f l    and 0T T  at the walls of the channel. 

Where Cp, E0 and k are the specific heat, electrical conductivity and thermal conduc- 

tivity respectively and the velocity of the flow at the centreline (i.e α = 0) is Fmax. 

From equation (9), ( ) ( , )u l f l   (13) 

 
Fig. 1. Schematics diagram of the Jeffery Hamel Flow 
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By eliminating the pressure term from eqs. (10)-(12) and using the above transfor-

mation we have: 
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Subject to the boundary conditions 
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3. Solution of the MHD Jeffery-Hamel flow with heat transfer problem 

using the Differential Transform Method 

The differential transform of function e(η) can be defined as follows: 
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where e(η) is original function and E(k) is the transformed function. The uppercase 
and lowercase letters represent the transformed and original function respectively. 
The inverse differential transform of E(k) is defined as: 
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By applying the fundamental operations of the differential transform method to 
equation (16)-(19), it obtains, 
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and 
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Upon solving the above with the conditions (17), it obtain, 
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In this particular case, if we take Re = 20, Pr = 6.2, 
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Ec = 0.5, we have, 
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Equation (24) and (25) describe the velocity profiles of Jeffery Hamel flow between 

two non-parallel plates with heat transfer in Eyring-Powell fluid. 
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4. Convergence study of the solution 

Theorem: Let  be an operator from a Hilbert space H0 in to H0 and let E be 

an exact solution of Eq. (15) and (16). Then 
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Corollary: If 0 1, 1,2,3,...i i    , then 
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5. Results and discussion 

For the validity of the results, the obtained results have been compared with the 

available numerical results as shown in Table 1, and the error has been computed  

for Re = 20, Pr = 6.2, 
180


   and Ha = 5, 0.2pE  , 0.5cE  , also from Figures  

2-10, it can be observed that there is a good agreement between the obtained and 

the available results.  

Table I. Comparison between DTM (Differential Transform Method) and Numerical 

solution for Re = 20, Pr = 6.2, 
180


   and Ha = 5, ep = 0.2, Ec = 0.5 

 
u(η) v(η) 

η DTM Numerical Error DTM Numerical Error 

0 1 1 0 1 1 0 

0.1 0.917134134 0.91701151 0.000122623 0.997652 0.998501 0.00085 

0.2 0.701098433 0.70097338 0.000125053 0.988524 0.988265 0.000259 

0.3 0.430261948 0.430132422 0.000129525 0.96939 0.969043 0.000347 

0.4 0.184119697 0.183976428 0.00014327 0.940561 0.940353 0.000207 

0.5 0.004708255 0.004545125 0.00016313 0.903678 0.903006 0.000672 

0.6 –0.10778639 –0.10796946 0.000183066 0.850736 0.850757 2.1E-05 

0.7 –0.164840653 –0.16506377 0.00022312 0.757532 0.75726 0.000272 

0.8 –0.161886148 –0.16230921 0.000423066 0.601488 0.601144 0.000344 

0.9 –0.098399565 –0.09902268 0.00062312 0.385191 0.380578 0.004613 

1 0.00006031 0 0.00006031 4.51E-05 0 4.51E-05 

 

Figures 2-10 discusses the effect of various parameters like the angle, Hartmann 

number, Eckert number, Prandtl number and the Reynolds number on the velocity 

profile and heat profile of  Jeffery Hamel Eyring-Powell fluid flow. From Figures 2 

and 3, it can be observed that the velocity and the heat profile of Jeffrey Hamel 

Nano fluid flow decreases as the angle between two unparalleled walls increase 
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keeping the value of the remaining parameters as fixed. Additionally, it shows that 

as the angle of the channel gets larger, both the profiles (Velocity and Heat) of 

Jeffery Hamel nano-fluid flow show the same increasing pattern, but the temperature 

profile of Jeffrey Hamel nano-fluid flow increases faster in a convergent channel  

as compared to the velocity profiles of Jeffrey Hamel nano-fluid flow in a divergent 

channel. 

 

  

Fig. 2. The effect of angle on the velocity 

profile for both divergent (θ > 0) 

and convergent (θ < 0) channels 

Fig. 3. The effect of angle on the heat 

profile for both divergent (θ > 0)  

and convergent (θ < 0) channels 

  

Fig. 4. The effect of Ep on velocity 
profile for θ = 2.5 and Re = 20 

Fig. 5. The effect of Ep on heat profile 
for  for θ = 2.5 and Re = 20 

From Figures 4 and 5, it can be observed that the velocity profile of Jeffery Hamel 

nano-fluid flow decreases as the value of Ep increases, on the contrary the heat  

profile of Jeffrey Hamel nano-fluid flow also increases. 
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Fig. 6. The effect of Ha on velocity 

profile for θ = 2.5 and Re = 20 

Fig. 7. The effect of  Ha on heat profile 

for θ = 2.5 and Re = 20 

From Figures 6 and 7, it can be seen that the velocity profile of Jeffrey Hamel nano- 

fluid flow decreases as the value of the Ha increases, on the contrary the heat pro-

file of Jeffrey Hamel nano-fluid flow also increases. Similarly from Figure 8, it can 

be deduced that the velocity profile of Jeffrey Hamel nano-fluid flow decreases 

with the value of Reynolds number increases. 

 

 

Fig. 8. The effect of Reynolds number Re on the velocity profile for θ = 2.5 and Ep = 0.2 

Similarly, from Figures 9 and 10, it can be seen that the heat profile of Jeffrey 

Hamel nano fluid flow increases as the value of the Eckert number and the Prandtl 

number increases. 
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Fig. 9. The effect of Eckert number Ec 

on the heat profile for θ = 2.5 and Re = 20 

Fig. 10. The effect of Prandtl Pr 

on the heat profile with θ = 2.5 and Ep = 0.2 

5. Conclusions 

In this article, the flow behaviour of the velocity profiles in MHD Jeffery-Hamel 

fluid flow between two unparalleled plates with heat transfer in Eyring-Powell 

fluid is discussed using the Differential Transform Method at different slopes fora 

different Eckert Number, Prandtl number, Reynolds number and Hartmann number 

in both convergent and divergent channels. Similarly the efficiency of the present 

method has been obtained by comparing the obtained results with the available 

numerical results. It can be concluded that the Differential Transform Method is  

a reliable method that provides the solution in the form of a convergent series and 

it can be easily handled in analysing the effect of different parameters on both  

velocity profiles as well as on the heat transfer in MHD Jeffery-Hamel fluid flow. 
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