Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Based on the extended Huygens–Fresnel principle and the definition of second-order moments of the Wigner distribution function, the analytical expression for the kurtosis parameter of partially coherent controllable dark hollow beams in free space is derived, and used to study the influence of beam parameters on the kurtosis parameter. It is shown that the kurtosis parameter increases with increasing the wavelength and the waist width, or decreasing the scaling factor, however, the effect of the beam order and the spatial correlation length on the kurtosis parameter depends on the propagation distance. The results can be interpreted physically.
Czasopismo
Rocznik
Tom
Strony
533--543
Opis fizyczny
Bibliogr. 23 poz., wykr.
Twórcy
autor
- Department of Physics, Taiyuan University of Science and Technology, Taiyuan 030024, China
autor
- Department of Physics, Taiyuan University of Science and Technology, Taiyuan 030024, China
autor
- Department of Physics, Taiyuan University of Science and Technology, Taiyuan 030024, China
Bibliografia
- [1] YANGJIAN CAI, XUANHUI LU, QIANG LIN, Hollow Gaussian beams and their propagation properties, Optics Letters 28(13), 2003, pp. 1084–1086.
- [2] DEGANG DENG, XIAOYONG FU, CHAOYANG WEI, JIANDA SHAO, ZHENGXIU FAN, Far-field intensity distribution and M2 factor of hollow Gaussian beams, Applied Optics 44(33), 2005, pp. 7187–7190.
- [3] YANGJIAN CAI, EYYUBOGLU H.T., BAYKAL Y., Scintillation of astigmatic dark hollow beams in weak atmospheric turbulence, Journal of the Optical Society of America A 25(7), 2008, pp. 1497–1503.
- [4] EYYUBOGLU H.T., Propagation and coherence properties of higher order partially coherent dark hollow beams in turbulence, Optics and Laser Technology 40(1), 2008, pp. 156–166.
- [5] YANGSHENG YUAN, YANGJIAN CAI, JUN QU, EYYUBOGLU H. T., BAYKAL Y., KOROTKOVA O., M2-factor of coherent and partially coherent dark hollow beams propagating in turbulent atmosphere, Optics Express 17(20), 2009, pp. 17344–17356.
- [6] YANGSHENG YUAN, SHENGCAI DU, YIMING DONG, FEI WANG, CHENGLIANG ZHAO, YANGJIAN CAI, Nonparaxial propagation properties of a vector partially coherent dark hollow beam, Journal of the Optical Society of America A 30(7), 2013, pp. 1358–1372.
- [7] ALAVINEJAD M., TAHERABADI G., HADILOU N., GHAFARY B., Changes in the coherence properties of partially coherent dark hollow beam propagating through atmospheric turbulence, Optics Communications 288, 2013, pp. 1–6.
- [8] ZHANGRONG MEI, DAOMU ZHAO, Controllable dark-hollow beams and their propagation characteristics, Journal of the Optical Society of America A 22(9), 2005, pp. 1898–1902.
- [9] GUOQUAN ZHOU, Analytical vectorial structure of controllable dark-hollow beams in the far field, Journal of the Optical Society of America A 26(7), 2009, pp. 1654–1660.
- [10] HAIYAN WANG, XIANGYIN LI, Propagation of partially coherent controllable dark hollow beams with various symmetries in turbulent atmosphere, Optics and Lasers in Engineering 48(1), 2010, pp. 48–57.
- [11] GUOQUAN ZHOU, Non-paraxial investigation in the far field properties of controllable dark-hollow beams diffracted by a circular aperture, Journal of the Optical Society of America A 27(4), 2010, pp. 890–894.
- [12] ZHANGRONG MEI, DAOMU ZHAO, Generalized M2 factor of hard-edged diffracted controllable dark-hollow beams, Optics Communications 263(2), 2006, pp. 261–266.
- [13] BAIDA LÜ, XIQING WANG, Kurtosis parameter of Bessel-modulated Gaussian beams propagating through ABCD optical systems, Optics Communications 204(1–6), 2002, pp. 91–97.
- [14] HAIDAN MAO, DAOMU ZHAO, FENG JING, HONGJIE LIU, XIAOFENG WEI, Propagation characteristics of the kurtosis parameters of flat-topped beams passing through fractional Fourier transformation systems with a spherically aberrated lens, Journal of Optics A: Pure and Applied Optics 6(6), 2004, pp. 640–650.
- [15] EYYUBOGLU H.T., ARPALI C., BAYKAL Y.K., Flat topped beams and their characteristics in turbulent media, Optics Express 14(10), 2006, pp. 4196–4207.
- [16] GUOQUAN ZHOU, The beam propagation factors and the kurtosis parameters of a Lorentz beam, Optics and Laser Technology 41(8), 2009, pp. 953–955.
- [17] DAJUN LIU, ZHONGXIANG ZHOU, Propagation and the kurtosis parameter of Gaussian flat-topped beams in uniaxial crystals orthogonal to the optical axis, Optics and Lasers in Engineering 48(1), 2010, pp. 58–63.
- [18] GUOQUAN ZHOU, Propagation of the kurtosis parameter of a Lorentz-Gauss beam through a paraxial and real ABCD optical system, Journal of Optics 13(3), 2011, article 035705.
- [19] CHU X., Moment and kurtosis parameter of partially coherent cosh-Gaussian beam in turbulent atmosphere, Applied Physics B 103(4), 2011, pp. 1013–1019.
- [20] EYYUBOGLU H.T., Propagation analysis of Ince–Gaussian beams in turbulent atmosphere, Applied Optics 53(11), 2014, pp. 2290–2296.
- [21] XIAOQING LI, XIAOLING JI, Propagation characteristics of decentered annular beams through non-Kolmogorov turbulence, Journal of the Optical Society of America A 31(1), 2014, pp. 172–182.
- [22] MANDEL L., WOLF E., Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, UK, 1995.
- [23] YOUQUAN DAN, BIN ZHANG, Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere, Optics Express 16(20), 2008, pp. 15563–15575.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd520e9f-d26a-4bdb-9e94-cae9d267dc72