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Based on the extended Huygens–Fresnel principle and the definition of second-order moments of
the Wigner distribution function, the analytical expression for the kurtosis parameter of partially
coherent controllable dark hollow beams in free space is derived, and used to study the influence
of beam parameters on the kurtosis parameter. It is shown that the kurtosis parameter increases
with increasing the wavelength and the waist width, or decreasing the scaling factor, however,
the effect of the beam order and the spatial correlation length on the kurtosis parameter depends
on the propagation distance. The results can be interpreted physically. 
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1. Introduction
Optical beams with zero central intensity are called dark hollow beams (DHBs). In
the recent years, DHBs and their propagation characteristics have attracted much at-
tention because of their increasing applications in the field of atom optics [1–7].
DENG et al. investigated the far field intensity distribution of  DHBs based on the scalar
diffraction theory [2]. EYYUBOGLU reported the power in the bucket and the degree of
coherence for higher order partially coherent DHBs in atmospheric turbulence [4].
Based on the generalized Rayleigh–Sommerfeld diffraction integrals, YUAN et al. ob-
tained the nonparaxial propagation formulas of a vector partially coherent DHB for
the elements of the cross-spectral density matrix in free space [6]. MEI and ZHAO in-
troduced a new mathematical model called controllable dark hollow beams (CDHBs)
to describe DHBs, and thereby also derived the analytical propagation formula for
CDHBs through a paraxial optical system [8]. The propagation properties of  fully co-
herent and partially coherent CDHBs propagating through free space [9], atmospheric
turbulence [10], circular aperture [11] and hard-edged aperture [12] have also been ex-
tensively studied.
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The kurtosis parameter written in terms of the fourth- and second-irradiance moments
can be used to describe the degree of sharpness (or flatness) of any beam, so it is an im-
portant parameter to evaluate the beam propagation [13–21]. The irradiance profile of
beams is classified as platykurtic, mesokurtic or leptokurtic, according to the kurtosis
parameter K being less, equal or larger than 3 [13]. As yet the kurtosis parameter of
Gaussian beams, flat-topped beams, Bessel–Gauss beams, Lorentz–Gauss beams,
partially coherent cosh-Gaussian beam, Ince–Gauss beams, annular beams, etc., have
been derived [13–21]. More recently, Eyyuboglu analyzed the kurtosis parameter of
Ince–Gauss beams propagating in turbulent atmosphere [20]. The kurtosis parameter
of decentered annular beams was dealt with numerically by XIAOQING LI and XIAOLING
JI who found that the kurtosis parameter depends on a turbulence parameter [21].
However, as far as we know, the research on the kurtosis parameter of partially coher-
ent CDHBs has not been reported elsewhere. In this paper, the kurtosis parameter of
partially coherent CDHBs in free space will be studied. Some interesting results are
also given and discussed. 

2. Theoretical formulation

The field at the source plane z = 0 of fully coherent CDHBs is expressed as [8] 

(1)

where s = (sx , sy ) is the two-dimensional position vector at the plane z = 0,  de-
notes the binomial coefficient, N is the beam order of the CDHBs, w0 denotes the waist
width of the Gaussian part, p (0 < p < 1) is the scaling factor for controlling the dark
size of the CDHBs. When N > 1 and p → 0, Eq. (1) reduces to the field of flat topped
beams at the source plane z = 0. When N = 1 and p → 0, Eq. (1) becomes the field of
the Gaussian beam at the source plane z = 0.

Introducing the Schell-model correlator, we can express the cross-spectral density
function [22] of partially coherent CDHBs at the source plane z = 0 as 

(2)

where si = (six, siy) (i = 1, 2) specifies the two-dimensional vector in the plane z = 0,
σ0 denotes the spatial correlation length, for σ0 → ∞, Eq. (2) reduces to the cross-spec-
tral density function of fully coherent CDHBs.

EN s 0,( ) 1–( )n 1–

N
------------------------- N

n⎝ ⎠
⎛ ⎞ n s2

w0
2

------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp n s2

p2w0
2

------------------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

exp–
n 1=

N

∑=

N
n⎝ ⎠
⎛ ⎞

W s1 s2 0, ,( ) 1–( )n m+

N 2
-------------------------- N

n⎝ ⎠
⎛ ⎞ N

m⎝ ⎠
⎛ ⎞ n s1

2

w0
2------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp
n s1

2

p2w0
2------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp–
m 1=

N

∑
n 1=

N

∑

ms2
2

w0
2-------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp
ms2

2

p2w0
2------------------–

⎝ ⎠
⎜ ⎟
⎛ ⎞

exp–
s1 s2–( )2

2σ0
2----------------------------–exp×

×=



The kurtosis parameter of partially coherent... 535

In accordance with the extended Huygens–Fresnel principle [22], the cross-spectral
density function of partially coherent CDHBs propagating through free space is given by 

(3)

where z is the propagation distance, k is the wave number related to the wavelength λ
by k = 2π/λ. In Eq. (3) we have used the following sum and difference vector notation:

(4)

where ρi = (ρix, ρiy) is the position vector in the z plane.
After some operations as shown in [5, 23], Eq. (3) can be expressed in the following

alternative form

(5)

where κi = (κdx, κdy) is the two-dimensional position vector in spatial frequency do-
main. For the partially coherent CDHBs, using Eq. (2), we can write the cross-spectral
density function as

(6)
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(7b)

(7c)

(7d)

(7e)

due to the symmetry, A2, B2, C2 and D2 can be obtained by replacing “+” in A1, B1, C1
and D1 with “–”, respectively. QB, QC and QD can be obtained by replacing A1 in
Eq. (7e), with B1, C1 and D1, respectively.

By means of the cross-spectral density function, the Wigner distribution function
(WDF) of partially coherent CDHBs propagating through free space can be expressed
as [23] 

(8)

where vector θ = (θx, θy), kθx and kθy are the wave vector components along the x-axis
and y-axis, respectively.

The substitution from Eqs. (5), (6) and (7) into Eq. (8) yields
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where

(10a)

(10b)

(10c)

In consideration of the symmetry, FB (FC, FD), GB (GC, GD) and HB (HC, HD) can be
obtained by replacing A1, A2 and QA in FA, GA and HA, with B1 (C1, D1), B2 (C2, D2)
and QB (QC, QD), respectively.

The kurtosis parameter can describe the sharpness of any beam and is defined as
the ratio of the fourth-order moment to the square of the second-order moment. Based
on the WDF, the kurtosis parameter K is defined as

(11)
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(13c)

On substituting from Eq. (13) into Eq. (11), we obtain the expression

(14)

Equation (14) is the analytical expression for the kurtosis parameter of partially
coherent CDHBs, which depends on the scaling factor p, beam order N, waist width w0,
wavelength λ and spatial correlation length σ0. For N > 1 and p → 0, Eq. (14) will re-
duce to the expression for the kurtosis parameter of flat topped beams in free space.
For N = 1, p → 0, and σ0 → ∞, Eq. (14) becomes the expression for the kurtosis pa-
rameter of fully coherent Gaussian beams in free space, which can be expressed as

K = 3 (15)

which is the well-known result.
For the source plane z = 0, the analytical expression of the kurtosis parameter of

partially coherent CDHBs is expressed as

(16)
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tions (14) and (16) indicate that the waist width w0, wavelength λ and spatial correlation
length σ0 have an effect on the kurtosis parameter only upon propagation.

3. Numerical calculations and analyses
Figures 1a and 1b give the kurtosis parameter K of partially coherent CDHBs versus
the propagation distance z for the different scaling factor p and beam order N. The cal-
culation parameters are σ0 = 1 cm, w0 = 2 cm, λ = 632.8 nm, N = 4, p = 0.1, 0.2, 0.9
(Fig. 1a) and p = 0.9, N = 1, 5, 10 (Fig. 1b). As can be seen, the kurtosis parameter K
of partially coherent CDHBs depends on the scaling factor p, the beam order N and
the propagation distance z. From Fig. 1a it is seen that the kurtosis parameter increases
with increasing the propagation distance z and decreasing the scaling factor p, i.e.,
the bigger the propagation distance z is and the smaller the scaling factor p is, the bigger
the kurtosis parameter K is. From Fig. 1b we see that, when the propagation distance
z < 2 km, the kurtosis parameter K increases with decreasing the beam order N;
when the propagation distance z > 3 km, the kurtosis parameter K increases with in-
creasing the beam order N. Therefore, the effect of the beam order N on the kurtosis
parameter K depends on the propagation distance z.

The kurtosis parameter of partially coherent CDHBs propagating through free space
versus the propagation distance z for the different waist width w0, wavelength λ and
spatial correlation length σ0 are depicted in Figs. 2a, 2b and 2c, respectively. The cal-
culation parameters are N = 10, p = 0.9, and w0 = 1, 2, 4 cm (Fig. 2a), λ = 632.8, 1064,
1550 nm (Fig. 2b), and σ0 = 1 cm, 2 cm, ∞ (Fig. 2c), the other calculation parameters
are the same as in Fig. 1. From Figs. 2a–2c, we can find that the kurtosis parameter K
depends on the waist width w0, the wavelength λ and the spatial correlation length σ0
of partially coherent CDHBs propagating through free space (z > 0). However, the val-
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Fig. 1. The kurtosis parameter of partially coherent CDHBs versus the propagation distance z for
the different scaling factor p (a) and beam order N (b).
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ue of kurtosis parameters are equal at the source plane z = 0 for the different waist
width w0, wavelength λ or the spatial correlation length σ0. The result can be inter-
preted reasonably from Eq. (16), that is, the kurtosis parameter is independent of
the waist width w0, wavelength λ and spatial correlation length σ0 at the source plane
z = 0. It can be seen from Fig. 2a that the kurtosis parameter K increases with increasing
the waist width w0, i.e., the bigger the waist width w0 is, the bigger the kurtosis pa-
rameter K is. Figure 2b indicates that the kurtosis parameter K increases with increas-
ing the wavelength λ, and the kurtosis parameter K tends to be uniform for the different
wavelength λ with increasing propagation distance. The results can be explained
physically. From Eq. (14) we see that the kurtosis parameter K is proportional to zλ
(K ∝ zλ), and z plays a dominant role compared with λ when the propagation distance
is long. From Fig. 2c we see that the three curves cross at point (2073, 3), when
the propagation distance z < 2073 m, the kurtosis parameter K < 3; when the propaga-
tion distance z > 2073 m, the kurtosis parameter K > 3. In terms of  [9], the former ir-
radiance profile is platykurtic and the latter is leptokurtic of partially coherent CDHBs
for different spatial correlation length σ0. Moreover, Fig. 2c indicates that the effect
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of the spatial correlation length on the kurtosis parameter K depends on the propagation
distance z.

Figures 3a and 3b give the Wigner distribution function (WDF) h of partially co-
herent CDHBs versus the propagation distance z for the different scaling factor p
(Fig. 3a) and beam order N (Fig. 3b). The calculation parameters are ρx = 3 cm, ρy = 0,
θx = θy = 0, the other calculation parameters are the same as in Fig. 1. As can be seen,
the effect of the scaling factor and the beam order on the WDF h depends on the prop-
agation distance z.

4. Conclusion
In this paper, based on the extended Huygens–Fresnel principle and the definition of
second-order moments of the WDF, the analytical expression for the kurtosis param-
eter of partially coherent CDHBs propagating through free space is derived, and used
to study the influence of beam parameters on the kurtosis parameter. It is shown that
the kurtosis parameter K of partially coherent CDHBs depends on the scaling factor p,
the beam order N, the waist width w0, the wavelength λ and the spatial correlation
length σ0. With the increment of the wavelength λ and the waist width w0, as well as
the decrement of the scaling factor p, the kurtosis parameter K will increase for the partial-
ly coherent CDHBs propagating through free space, i.e., the bigger the wavelength λ
and the waist width w0 are, as well as the smaller the scaling factor p is, the bigger the
kurtosis parameter K is. However, the effect of the beam order N and the spatial cor-
relation length σ0 on the kurtosis parameter K depends on the propagation distance z.
The theoretical analysis presented in this paper can also be used for guiding, focusing,
and trapping ultracold atoms, even Bose–Einstein condensates.
Acknowledgements – This work was financially supported by the National Natural Science Foundation
of China (Nos. 61405136 and 61178067), the Natural Science Foundation for Young Scientists of Shanxi
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