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Abstract. To what extent does the spectrum of the Laplacian operator on a domain D with
prescribed boundary conditions determine its shape? This paper first retraces the history of
this problem, then Kac’s approach in terms of a diffusion process with absorbing boundary
conditions. It is shown how the restriction to a polygonal boundary for D in this method,
which required taking the limit of an infinite number of sides to obtain a smooth one, can be
avoided by using the Duhamel method.
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1. A BRIEF HISTORICAL INTRODUCTION

In 1966 Mark Kac published a paper [5] with the arresting title “Can one hear the
shape of a drum?”. The problem was to determine if knowing all the eigenvalues of
the Laplacian operator ∆ on a two-dimensional domain D with Dirichlet boundary
conditions was sufficient to reconstruct the shape of D.

Apparently Kac heard of the problem from Salomon Bochner, and later, in a con-
versation with Lipman Bers, the latter summed it up in the picturesque way which
became the title of the paper.

The question can in fact be traced further back. In 1882 the spectroscopist Arthur
Schuster (later Sir Arthur), in his report to the British Association for the Advancement
of Science, said: “It would baffle the most skillful mathematicians to solve the inverse
problem and to find out the shape of a bell by means of the sounds which it is capable
of sending out”.

A first step followed a seminar Alte und neue Fragen der Physik given by
H.A. Lorentz in 1910 at Göttingen. He ended with the remark that it should be
possible to show that the number of eigenvalues N(λ) less than λ for the Laplacian
operator on a three-dimensional domain Ω with Dirichlet conditions was approximately
|Ω|
6π2λ

3/2, and within two years Herman Weyl had proved the result.
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As stated, the answer to the original question is in the negative. It was already
known at the time that some different 16-dimensional tori were isospectral, but the
problem restricted to the more realistic two or three-dimensional world remained
unsolved for some considerable time.

Much water has flowed under the bridge since the question was first asked.
Clearly the skeptics would have the shorter, but not necessarily easier, task of

finding a single counterexample, and a first pair of planar isospectral domains was
found in 1992 [3], followed by others of simpler shapes [2]. Each pair has the property
of sharing same area, same perimeter and same corners (but not in the same order),
but above all of being non-convex.

However, it is now known [12] that the answer can be “yes”, provided for example
that D be convex with an analytic boundary ∂D and possess certain symmetries.

The problem has also been extended to a variety of cases, notably to the spectrum
of the Laplace–Beltrami operator on an n-dimensional Riemannian manifold (M,g) [1].

It is convenient to introduce a kind of “partition function” or Dirichlet series for
the spectrum

f(t) =
∑

n

e−λnt,

and to consider its asymptotic behaviour as t ↓ 0.
A result due to Minakshisundaram and Pleijel [7] proves the existence of

an asymptotic expansion

∑

i

e−λit
t↓0∼ (4πt)−n/2(a0 + a1t+ a2t

2 + . . .)

and Pleijel [9] showed that if D is a two-dimensional simply connected domain, with
a smooth boundary, then an asymptotic formula such as

∑
e−λnt

t↓0∼ A

4πt −
L

8
√
πt

+ C + o(1)

should hold with A the area of D (this is Weyl’s result), L its perimeter, and the con-
stant C = 1/6.

The determination of the coefficients of the asymptotic expansion has been studied
by McKean and Singer [6], as well as by Smith [10] in the case of a smooth boundary
and by van den Berg and Srisatkunarajah [11] in the polygonal case.

2. THE 1966 PAPER

Kac’s idea can be summarized as follows: the solution to the equation

∂u(r, t)
∂t

= ∆u(r, t), u(r, t)
∣∣
∂D

= 0, u(r, 0) = f(r),
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where D is some domain in R2 and f(r) a prescribed initial condition, can be expressed
in terms of the eigenvalues and eigenfunctions of the Laplacian on D with the same
boundary conditions:

∆un(r) = λnun(r), un(r)
∣∣
∂D

= 0.
Assuming the set of eigenfunctions to form a complete orthonormal basis,

the solution can be written as
u(r, t) =

∑

n

cnun(r)e−λn t,

where the {cn} are the coefficients of the expansion of the initial conditon f(r) in this
basis. In particular if f(r) = δ(r− ξ), where ξ is a point inside D, then

u(r, t) =
∑

n

un(ξ)un(r)e−λn t

and as a consequence ∑

n

e−λn t =
∫∫

D

u(ξ, t)dξ.

In the present context it is the behaviour of the sum when t ↓ 0 which is required,
and in particular how it is related to the characteristic features of the domain D.

Disregarding at first the boundary condition, the solution to the equation is simply

u(r, t) = 1
4πt e

−|r−ξ|2/4t,

and so ∑

n

e−λn t
t↓0∼
∫∫

D

1
4πt dξ

t↓0∼ A(D)
4πt .

By the method of images, or rather its Sommerfeld–Carslaw extension, Kac then
showed that if the domain were polygonal with an area A, perimeter L and a number
of corners of internal angles θi > π/2, then

∑

n

e−λn t
t↓0∼ A

4πt −
L

8
√
πt

+ C,

where

C = − 1
8π
∑

i

sin
(
π2

θi

) ∞∫

−∞

dy
(1 + cosh y)

[
cosh

(
πy
θi

)
− cos

(
π2

θi

)] .

The integral is not evaluated in the paper, since what was required was the limit
when the number of corners goes to infinity and each angle θi → π, thus leading to
a smooth boundary, for which

C∞ = 1
8π

∞∫

−∞

dy
(1 + cosh y)2 = 1

6 ,

thus recovering the third term of the Weyl–Pleijel formula.
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The integral can in fact be evaluated quite easily by noticing that if s, t ∈ R,

sin s
cosh t− cos s = −< cot s+ it

2 ,

then the constant term can be written as

− 1
8π <

∑

i

∞∫

−∞

1
1 + cosh y cot π

2θi
(π + iy) dy = − 1

8π =
∑

i

∞∫

−∞

coth π
2θi (y − iπ)

1 + cosh y dy.

Consider then the integral

I =
∫

Γ

coth βz
1− cosh z dz

(
β = π

2θ

)

where Γ runs from <z = −∞ to <z =∞ along the line =z = −iπ and returns along
=z = iπ.

We have on the one hand

I =
∞∫

−∞

1
1 + cosh y [ coth β(y + iπ)− coth β(y − iπ) ]dy = 2i=

∞∫

−∞

coth β(y − iπ)
1 + cosh y dy,

and on the other hand, as β < 1, if θi > π
2 , the only singularity inside Γ is the triple

pole at the origin, where the integrand behaves as

coth βz
1− cosh z ∼ −

2
βz3 +

(
1

6β −
2β
3

)
1
z

+ O(z).

Substituting β = π
2θi gives

Ci = 1
24

(
π

θi
− θi
π

)
.

Suppose now the (convex) polygon to have n sides, with each angle θi = π − εi,
and take the limit n→∞, εi → 0:

C = lim
n→∞

1
24
∑

i

(
π

π − εi
− π − εi

π

)
= lim
n→∞

1
12π

∑

i

εi = 1
6 ,

since in this case
∑
i θi = (n− 2)π.

It can be shown that this result is in fact valid for any polygon, even with acute
angles, but the analysis along the above lines is involved.

Finally Kac showed that for a domain D with a smooth boundary ∂D and a number
G of holes, each one with a smooth boundary, then the constant becomes 1−G

6 ,
and L is to be understood as the total perimeter of the domain.
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It will be convenient to rewrite the Weyl–Pleijel–Kac formula in a way that
isolates the contributions coming from the possible sharp corners of the boundary:
for a domain D with a piecewise smooth, simple border, a number G of holes (with
smooth boundaries) and a finite number of corners of angle θi,

∑

n

e−λnt
t↓0∼ A

4πt −
L

8
√
πt

+ 1−G
6 + 1

24
∑

i

(
θi
π

+ π

θi
− 2
)
.

Thus for a quarter circle (quadrant)

C = 1
6 + 3 · 1

24

(
2 + 1

2 − 2
)

= 11
48 .

3. A DIFFERENT APPROACH

An important part of Kac’s paper is devoted to making the “diffusion process method”
result rigorous, and justifying the approximation of a smooth shape by a polygon of
increasingly large number of sides. What we shall endeavour to achieve in this paper
is to show that the diffusion method can in fact be applied directly to the case where
D has a smooth, rectifiable, simple boundary ∂D.

Let A(D) and L(D) be its area and perimeter. At each point P of the boundary
draw a segment of fixed length a along the inward normal to ∂D at P . Assume that
the locus of P ′ is again simple, and can be considered as the boundary ∂D′ of a new
domain D′. Then the area A(D′) is equal to

A(D′) = A(D)− L(D) a+ πa2.

For as P ′ approaches P , the normals n and n′ intersect at C, with |PC| = R,
the radius of curvature at P (see Figure 1).

Fig. 1. Merging of two normals to the boundary
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So

A(D)−A(D′) = 1
2

∫ [
R2 − (R− a)2]dα

= a

∫
ds− a2

∫
dα = La− πa2.

The boundary condition u|∂D = 0 can now be taken partly into account by noticing
that if ξ lies close to the boundary, then by the method of images and neglecting
the curvature, i.e. replacing the boundary condition by u|∆ = 0,

u(r, t) = 1
4πt e

−|r−ξ|2/4t − 1
4πt e

−|r−ξ′|2/4t,

where ξ′ is the image of ξ on the normal to ∂D through ξ (Figure 2).

Fig. 2. Approximating the boundary by its tangent

It then follows that

u(ξ, t) = 1
4πt

[
1− e−|ξ−ξ′|2/4t

]

and
∑

n

e−λn t =
∫∫

D

u(ξ, t)dξ
t↓0∼ 1

4πt

∫∫

D

[
1− e−|ξ−ξ′|2/4t

]
dξ

t↓0∼ A(D)
4πt −

1
4πt

∫∫

D

e−|ξ−ξ′|2/4tdξ.

The integral is exponentially small unless |ξ − ξ′| ∼ O(
√
t). Setting therefore

|ξ − ξ′| = 2p
√
t shows that it behaves when t ↓ 0 as

∞∫

0

e−p
2
[
A[ (p+ dp)

√
t ]−A[ p

√
t ]
]
,
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A[ p
√
t ] being the area of the domain where the boundary has been “shrunk” by an

amount p
√
t.

In view of the previous result, this becomes
∞∫

0

e−p
2
[
−L (p+ dp)

√
t + Lp

√
t + π(p+ dp)2t− πp2t

]
= L

√
πt

2 + πt,

L being the length of the domain D.
To summarize one finds

∑

n

e−λn t
t↓0∼ A(D)

4πt −
L(D)
8
√
πt

+ 1
4 + o(1).

The same argument can also be applied to the case where the domain has a number
G of holes. Assuming again their boundaries to be smooth and simple, and in view of
the orientation of the curvilinear integrals the result would be

∑

n

e−λn t
t↓0∼ A(D)

4πt −
L(D)
8
√
πt

+ 1−G
4 + o(1).

where L(D) is the the total length (including the holes) of the domain.
However, this result has been obtained by neglecting the curvature of the boundary.

It will now be shown that if this is taken into account, the formula becomes
∑

n

e−λn t
t↓0∼ A(D)

4πt −
L(D)
8
√
πt

+ 1−G
6 + o(1).

4. THE DUHAMEL METHOD

To solve the one-dimensional equation
∂u(x, t)
∂t

= ∂2u(x, t)
∂x2 , u(0, t) = f(t), u(x, 0) = 0,

let u0(x, t) be the solution in the case f(t) = 1 (t > 0), viz.

u0(x, t) = 2√
π

∞∫

x
2
√
t

e−s
2
ds.

Then by the Duhamel method [4],

u(x, t) =
t∫

0

f(s) ∂tu0(x, t− s) ds

= x

2
√
π

t∫

0

f(s) e−
x2

4(t−s) (t− s)−3/2 ds.
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Likewise for the two-dimensional case

∂u

∂t
= ∂2u

∂x2 + ∂2u

∂y2 , u(0, y, t) = g(y, t), u(x, y, 0) = 0,

consider first the special case u0(0, y, t) = g(y), for which

u0(x, y, t) = 1
π

∞∫

−∞

xg(η)
x2 + (η − y)2 e−

x2+(η−y)2
4t dη.

Then again by the Duhamel method,

u(x, y, t) =
t∫

0

f(s) ∂tu0(x, y, t− s) ds

= 1
π

t∫

0

ds
∞∫

−∞

xg(η, s)
x2 + (η − y)2 ∂t e

− x
2+(η−y)2

4(t−s) dη

= 1
4π

t∫

0

ds
∞∫

−∞

xg(η, s)
(t− s)2 e−

x2+(η−y)2
4(t−s) dη.

To solve therefore

∂u

∂t
= ∆u, u(r, 0) = f(r), u

∣∣
Γ = 0

where Γ ≡ y2+2RP x = 0 is the osculating parabola to ∂D at P (see Figure 3), let u0 be
the solution of

∂u0
∂t

= ∆u0, u0(r, 0) = f(r), u0
∣∣
x=0 = 0.

P

Fig. 3. Osculating parabola to boundary
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Then v = u− u0 obeys the equation

∂v

∂t
= ∆v, v(r, 0) = 0, v

∣∣
Γ = −u0

∣∣
Γ,

and in the vicinity of P , the last condition can be replaced by the approximation

v
∣∣
x=0 = −u0

∣∣
Γ.

Now

u0
∣∣
Γ = 1

4πt

[
e−

(x−ξ)2+y2
4t − e− (x+ξ)2+y2

4t

]

Γ

= 1
4πt

[
e−

(
y2
2R+ξ

)2
+y2

4t − e−

(
y2
2R−ξ

)2
+y2

4t

]

= 1
2πte

− y2+ξ2
4t sinh ξy2

4Rte
− y4

16R2t ,

and this quantity is exponentially small as t ↓ 0 unless both y and ξ are O(
√
t),

in which case

u0
∣∣
Γ ∼

1
8πRt2 ξy

2 e−
y2+ξ2

4t .

It follows then from the preceding paragraph that

v(x, y, t) ∼ − x

4π

t∫

0

ds
∞∫

−∞

1
(t− s)2 e

− x
2+(y−η)2

4(t−s)
1

8πRP s2 ξη
2 e−

η2+ξ2
4s dη,

and in particular

v(ξ, 0, t) = − ξ

4π

t∫

0

ds
∞∫

−∞

1
(t− s)2 e

− ξ2+η2
4(t−s)

1
8πRP s2 ξη

2 e−
η2+ξ2

4s dη

= − ξ2

32π2RP

t∫

0

ds e−
ξ2t

4s(t−s)
1

s2(t− s)2

∞∫

−∞

η2 e−
η2t

4s(t−s) dη

= − ξ2

8π2RP t3/2

t∫

0

ds e−
ξ2t

4s(t−s)

√
π

s(t− s) .
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It now remains to integrate over ξ, and since it lies inside the domain, assumed to
be convex, we find that the correction to the asymptotic sum, due to the curvature of
the boundary, is

− 1
8π2 t3/2

t∫

0

ds
√

π

s(t− s)

0∫

−∞

ξ2 e−
ξ2t

4s(t−s)
π(RP + ξ + dξ)2 − π(RP + ξ)2

RP
dξ

= − 1
4π t3/2

t∫

0

ds
√

π

s(t− s)

0∫

−∞

ξ2 e−
ξ2t

4s(t−s)
(

1 + ξ

RP

)
dξ

= − 1
2t3

t∫

0

ds s(t− s) +O(
√
t) t↓0= − 1

12 .

The same reasoning can be held in the case the domain having holes, and when
this correction − 1−G

12 is taken into account, the W–P–K formula is recovered.
It will have been noticed that this result holds provided the radius of curvature

RP 6= 0 at all points of the border. For instance, the third term of the asymptotic
expansion for a square with rounded corners, however small but non-vanishing the
radius may be, is different from that for a square.

The method followed by Kac, namely of starting with a polygon and increasing
the number of edges to obtain in the limit a smooth boundary, cannot be put into
reverse. The Duhamel method is inapplicable if there is no well-defined normal, and
consequently tangent, to the boundary at a sharp corner.

However, the previous results suggest that the modifications to the asymptotic
expansion due to sharp corners are local effects, that is to say the contribution of
each one is independent of the actual shape of the rest of the boundary, at least to
the first order. As a consequence it is possible to evaluate this contribution from
the known spectrum of the circular sector of angle $ ≤ π (to retain convexity), for
which the eigenfunctions are the Bessel functions Jmν(jmν,nρ) sinnθ, where ν = π/$
and m,n = 1, 2, . . .

To find the asymptotic expansion of

f(t) =
∑

m,n

e−j
2
mν,nt,

we consider the Laplace transform F (s) of tf(t) (that of f(t) does not exist):

F (s) =
∞∫

0

e−st tf(t)dt =
∑

m,n

1
(s+ j2

mν,n)2

and study its asymptotic behaviour as s→∞.
Since

Jµ(z) =
(
z
2
)µ

Γ(µ+ 1)

∞∏

k=1

(
1− z2

j2
µ,k

)
,
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it follows that ∞∑

µ,n

1
(s+ j2

µ,n)2 = −
∑

µ

d2

ds2

[
ln Iµ(

√
s)

sµ/2

]
.

From Olver’s uniform (saddle point) asymptotic expansion [8],

Iµ(w) ∼ 1√
2π

eη

(µ2 + w2)1/4

[
1 + u1(t)

µ
+ . . .

]
,

where

η =
√
µ2 + w2 + µ lnw − µ ln(µ+

√
µ2 + w2)

t = µ√
µ2 + w2

, u1(t) = 3t− 5t3
24 , . . .

it follows that

− d2

ds2 ln Iµ(
√
s)

sµ/2
∼ 1

4(µ2 + s)3/2 −
µ

2s2 + µ2(2µ2 + 3s)
4s2(µ2 + s)3/2 −

1
4(µ2 + s)2

+ 22µ2 − 3s
32(µ2 + s)7/2 + . . .

Let $ = π/p, p > 1 for the sector to be convex, but not necessarily an integer.
Then the values for µ are the integer multiples of p, and as

∞∑

k=1
(k2p2 + s)−1 = 1

2s

[
π
√
s

p
coth π

√
s

p
− 1
]
,

consequently,
∞∑

k=1
(k2p2 + s)−2 ∼ π

4ps3/2 −
1

2s2 +O(s−1e−2π
√
s/p).

Similarly
∞∑

k=1
(k2p2 + s)−3/2 s↑∞∼ 1

ps
− 1

2s3/2 +O(s−3/2e−2π
√
s/p),

for

2
∞∑

n=1
(n2 + s)−3/2 + s−3/2 =

∞∑

n=−∞
(n2 + s)−3/2 = lim

R→∞
1

2πi

∫

ΓR

π cotπz
(z2 + s)3/2 dz,

and this is equal to ∫

γ

coth πy
(y2 − s)3/2 dy,

where ΓR and γ are as shown in Figure 4.
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Fig. 4. Integration contours

Integration by parts allows the contour γ to be shrunk (ε → 0) around the cut,
and gives

2
s

lim
y→∞

y coth πy
(y2 − s)1/2 + 2

s

∞∫

√
s

dy
sinh2 πy (y2 − s)1/2 = 2

s
+O(s−3/2e−2π

√
s),

and by scaling the result follows.
Finally, proceeding along similar lines,

∞∑

k=1

[
kp

s2 −
k2p2 (2k2p2 + 3s)
2s2(k2p2 + s)3/2

]
= 1

8ps −
p

24s2 + O(s−3),

∞∑

k=1

22k2p2 − 3s
32(k2p2 + s)7/2 = 1

24ps2 + O(s−5/2),

and all remaining terms are at at most O(s−5/2).
Collecting all terms, we find

F (s) =
∑

k,n

1
(s+ j2

kπ/$,n)2 ∼
a0
s

+ a1
s3/2 + a2

s2 + O(s−5/2),

and consequently

f(t) =
∑

n

e−λnt
t↓0∼ a0

t
+ 2a1√

πt
+ a2 + O(

√
t)

with
a0 = 1

8p , a1 = −1
8 −

π

16p , a2 = 1
8 + p

24 + 24
p
.
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In terms of the area A = $/2 = π
2p and the perimeter L = 2 + $ = 2 + π

p
of the sector, this becomes

f(t) =
∑

n

e−λnt
t↓0∼ A

4πt −
L

8
√
πt

+ 1
8 + 1

24

( π
$

+ $

π

)
.

We now write this result as
∑

n

e−λnt
t↓0∼ A

4πt −
L

8
√
πt

+ 1
6 + C

with
C = − 1

24 + 1
24

( π
$

+ $

π

)
,

in order to evaluate the modification to the smooth boundary formula due to a single
corner. Let $ = π, then the domain is a half-circle, and has two corners, both of
internal angle π/2. As

C = − 1
24 + 1

12 = 1
24 ,

each right-angle corner contributes 1/48.
Consequently, a corner of internal angle $ must contribute

− 1
24 + 1

24

( π
$

+ $

π

)
− 1

24 = 1
24

( π
$

+ $

π
− 2
)
,

and this completes the proof.
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