PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical model of oscillations of bearing body frame of emergency and repair railcars

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nowadays, the importance of maintenance and effective use of available railcars in the railway transport is growing, and researchers and technical experts are working to address this issue with the use of various techniques. The authors address the use of analytical technique, which includes mathematical solutions for flexural and longitudinal fluctuations of the bearing framework of a railcar body frame. The calculation is performed in connection with the modernization of the body frame of emergency and repair rail service car, taking into account the variability in section, mass, longitudinal stiffness, and bending stiffness. It allows for extension of the useful life of their operation, with special focus on vehicles owned by Joint-Stock Company "Uzbekistan Railways". The simulation of equivalent bearing body frame of emergency and repair rail service car was carried out using an elastic rod with variable parameters including stiffness and mass. The difference between the proposed model and the existing ones is due to the variability in cross section, mass, and the longitudinal and bending stiffness along the length of equivalent beam, which corresponds to the actual conditions of operation and data of the experimental studies conducted by the authors on the bearing frames of electric locomotives’ variable sections. The frequency analysis that was carried out with the use of the Mathcad 14 programming showed that the frequencies of natural oscillations change on n harmonicas = 1, 2, 3 … 5. As regards longitudinal oscillations of system, in case of introduction of the damping subfloor, the frequency of natural oscillations of the upgraded rail car frame λ1mn increases on comparing with standard λ1n (for example, in case of n = 5 the frequency is 0.587 and 0.602 Hz/m, respectively).
Czasopismo
Rocznik
Strony
93--102
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
  • Tashkent Institute of Railway Transport Engineers 1, Adilkhodjaev Street, Mirabad district, Tashkent, Uzbekistan
  • Tashkent Institute of Railway Transport Engineers 1, Adilkhodjaev Street, Mirabad district, Tashkent, Uzbekistan
autor
  • Tashkent Institute of Railway Transport Engineers 1, Adilkhodjaev Street, Mirabad district, Tashkent, Uzbekistan
Bibliografia
  • 1. Spiryagin, M. & Cole C. & Sun, Y.Q. & McClanachan, M. & Spiryagin, V. & McSweeney, T. Design and Simulation of Rail Vehicles. Ground Vehicle Engineering series. 2014. CRC Press. - 337 p.
  • 2. Popp, K. & Schiehlen, W. System Dynamics and Long-Term Behaviour of Railway Vehicles, Track and Subgrade. 2013. Springer Science and Business Media. 488 p.
  • 3. Wang, K. & Huang, C. & Zhai, W. & Liu, P. & Wang, S. Progress on wheel-rail dynamic performance of railway curve negotiation. Journal of Traffic and Transportation Engineering. Vol. 1. No. 3. 2014. P. 209-220.
  • 4. Вершинский, С.В. & Данилов, В.Н. & Челноков, Н.И. Динамика вагонов: Учебник. Москва: Транспорт. 1991. - 352 p. [In Russian: Vershinsky, S.V. & Danilov, V.N. & Chelnokov, N.I. Wagon Dynamics: A Textbook. Moscow: Transport].
  • 5. Камаев, В.А. Оптимизация параметров ходовых частей железнодорожного подвижного состава. М. Машиностроение. 1980. [In Russian: Kamaev, V. A. Optimization of Parameters of Running Parts of Railway Rolling Stock. Moscow. Mechanical Engineering].
  • 6. Anyakwo, A. & Pislaru, C. & Ball, A. A New Method for Modelling and Simulation of the Dynamic Behaviour of the Wheel-rail contact. International Journal of Automation and Computing. 2012. Vol. 9. No. 3. P. 237-247.
  • 7. Troha, S. & Milovančević, M. & Kuchak, A. Software testing of the rail vehicle dynamic characteristics. Mechanical Engineering. 2015. Vol. 13. No. 2. P.109-121.
  • 8. Bruni, S. et al. Modelling of suspension components in a rail vehicle dynamics context. Vehicle System Dynamics. 2011. Vol. 49. No. 7. P. 1021-1072.
  • 9. Bogdevicius, M. & Zygiene, R. Simulation of dynamic processes of rail vehicle and rail with irregularities. Journal of KONES Powertrain and Transport. 2015. Vol. 21. No. 2. P. 21-26.
  • 10. Bureika, G. & Subačius, R. Mathematical model of dynamic interaction between wheel-set and rail track. Transport. 2002. Vol. XVII. No. 2. P. 46-51.
  • 11. Sebesan, I. & Baiasu, D. Mathematical model for the study of the lateral oscillations of the railway vehicle. Scientific Bulletin Series D: Mechanical Engineering. University Politehnica Bucharest. 2012. Vol 7. No. 2. P. 51-66.
  • 12. Manashkin, L.A & Myamlin, S.V. To the question of modelling of wheels and rails wear processes. Наука та прогрес транспорту. Вісник Дніпропетровського національного університету залізничного транспорту. 2013. Vol. 3. No. 45. P. 119-124. [Bulletin of Dnepropetrovsk National University of Railway Transport].
  • 13. Žygienė, R. & Bogdevičius, M. & Dabulevičienė, L. Mathematical model and simulation results of the dynamic system railway vehicle wheel-track with a flat. Science – Future of Lithuania. 2014. Vol. 6, No. 5. P. 531–537.
  • 14. Khromova, G.A. & Babadjanov, A.A. Development of Analytical and Numerical Calculation Method to Dynamic Strength of the Bearing Body Frame of Governing Electric Locomotive. Proc. of the 6th International Scientific and Technical Conference "Train Operation Safety". Moscow: MIIT, 26÷28 October 2005. MIIT, Moscow. P. IY-87÷89.
  • 15. Khromova, G.A. & Babadjanov, A.A. & Zakirov, Sh. A. Development of Analytical and Numerical Calculation Method to Dynamic Strength of the Bearing Body Frame of Governing Electric Locomotive. Journal Industrial Transport of Kazakhstan, Kazakh University of Railways. 2006. No 3 (9). P. 14-18.
  • 16. Dahlberg, T. Railway Track Stiffness Variations – Consequences and Countermeasures. International Journal of Civil Engineering. 2010. Vol. 8. No. 1. P. 1-12.
  • 17. Русанов, О.А. & Панкратова, И.Г. Расчетные и экпериментальные исследования собственных колебаний кузовов вагонов электропоездов. Математическое и компьютерное моделирование машин и систем. 2010. No. 3 (24). P. 44-52. [In Russian: Computational and pilot studies of own fluctuations of bodies of railway vehicles. Mathematical and computer modelling of vehicles and systems].
  • 18. Хохлов, А.А. Динамика сложных механических систем. Москва: МИИТ. 2002. 172 с. [In Russian: The dynamics of complex mechanical systems. Moscow: MIIT. 2002. 172 p.].
  • 19. Eckwert, P. & Frohn, J. Упругие опорные элементы для подвижного состава. Журнал «Железные дороги мира» - информационная служба. Glasers Annalen. 2005. № 1-2. С. 48 – 57. [In Russian: Elastic basic elements for a rolling stock. Journal “Railways of the world” information service. 2005. No. 1-2. P. 48 – 57].
  • 20. Huston, R. & Liu, C. Q. Formulas for Dynamic Analysis (Mechanical Engineering). Florida: CRC Press. 2001. 642 p.
  • 21. Мышкис, А.Д. Элементы теории математических моделей. Изд. 3-е, исправленное. Москва.: КомКнига. 2007. 192 p. [In Russian: Mishkis A.D. Elements of the theory of mathematical models. 3rd ed. Moscow: Komkniga].
  • 22. Челноков, И.И. Гидравлические гасители колебаний пассажирских вагонов. Москва: Транспорт. 1975. 73 p. [In Russian: Hydraulic quenchers of fluctuations of railway cars. Moscow: Transport].
  • 23. Кононов, В.Е. Резиновые амортизаторы в экипажной части локомотивов. Москва: РГОТУПС. 2002. 147 p. [In Russian: Rubber shock-absorbers in vehicular part of locomotives. RGOTUPS].
  • 24. Myamlin, S. & Lingaitis, L.P. & Dailydka, S. & Vaičiūnas, G. & Bogdevičiusc, M. & Bureika, G. Determination of the dynamic characteristics of freight wagons with various bogie. Transport. 2015. Vol. 30. No. 1. P. 88-92.
  • 25. Myamlin, S. & Ten, A. & Neduzha, L. & Shvets, A. Spatial Vibration of Cargo Cars in Computer Modelling with the Account of Their Inertia Properties. In: Proceedings of 15th International Conference. Mechanika. 2010. P. 325-328.
  • 26. Diomin, Y.V. & Diomin, R.Y. Procedural issues acceptance of rolling stock gauge 1435/1520 mm. Prace Naukowe Politechniki Warszawskiej. Transport. 2013. Z. 98. P 119-124.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd4aad09-3216-4d5f-984b-2b286ebfe22b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.