PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Euler solution selecting method based on the damping factor

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a method, named the variable damping factor selecting method, to select reliable Euler solutions. Our method considers the influence of small perturbations on the movement of Euler solutions as a selection criterion. Small perturbations have little influence on the least-squares solution generated from a stable matrix with large eigenvalues and in the projection area of the source position in the observational data. It is found that the matrix is stable and the solutions are reliable. By using the damped least square method to calculate the Euler solutions, our method can automatically estimate whether a solution can be saved. The saved solution, which is considered to be reliable, is not sensitive to any changes of the damping factor and is usually generated within a sliding window located in the projection area. In our work, the damping factor is chosen from the eigenvalue of the sliding window. Tests on synthetic and real data showed that our method is simple and easy to conduct, and can successfully outline causative bodies and singular point sources.
Czasopismo
Rocznik
Strony
1551--1564
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
autor
  • China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
autor
  • Key Laboratory of Geo-Detection Ministry of Education and School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
autor
  • China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
autor
  • China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
autor
  • Key Laboratory for Resource Exploration Research of Hebei Province, School of Earth Science and Engineering, Hebei University of Engineering, Handan 056038, China
Bibliografia
  • 1. Barbisa VCF (1999) Stability analysis and improvement of structural index estimation in euler deconvolution. Geophysics 64(1):48–60. https://doi.org/10.1190/1.1444529
  • 2. Barbosa V, Silva J (2011) Reconstruction of geologic bodies in depth associated with a sedimentary basin using gravity and magnetic data. Geophys Prospect 59(6):1021–1034. https://doi.org/10.1111/j.1365-2478.2011.00997.x
  • 3. Beiki M (2010) Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics 75(6):I59–I74. https://doi.org/10.1190/1.3493639
  • 4. Beiki M (2013) TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters: an example from the Åsele area, Sweden. J Appl Geophys 90:82–91. https://doi.org/10.1016/j.jappgeo.2013.01.002
  • 5. Blakely RJ, Sherrod BL, Hughes JF et al (2009) Saddle Mountain fault deformation zone, Olympic Peninsula, Washington: western boundary of the Seattle uplift. Geosphere 5(2):105–125. https://doi.org/10.1130/GES00196.1
  • 6. Brocher TM, Parsons T, Blakely RJ et al (2001) Upper crustal structure in Puget Lowland, Washington: results from the 1998 seismic hazards investigation in Puget Sound. J Geophys Res Solid Earth 106(B7):13541–13564. https://doi.org/10.1029/2001JB000154
  • 7. Cooper GRJ (2004) Euler deconvolution applied to potential field gradients. Explor Geophys 35(3):165–170. https://doi.org/10.1071/EG04165
  • 8. Cooper GRJ (2006) Obtaining dip and susceptibility information from Euler deconvolution using the Hough transform. Comput Geosci 32(10):1592–1599. https://doi.org/10.1016/j.cageo.2006.02.019
  • 9. Davis K, Li Y (2009) Enhancement of depth estimation techniques with amplitude analysis. SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, pp 908–912. https://doi.org/10.1190/1.3255897
  • 10. Davis K, Li Y, Nabighian M (2010) Automatic detection of UXO magnetic anomalies using extended Euler deconvolution. Geophysics 75(3):G13–G20
  • 11. Dewangan P, Ramprasad T, Ramana MV et al (2007) Automatic interpretation of magnetic data using Euler deconvolution with nonlinear background. Pure Appl Geophys 164(11):2359–2372. https://doi.org/10.1190/1.3375235
  • 12. Fairhead JD, Bennett KJ, Gordon DRH et al (1994) Euler: beyond the “black box”[M]//SEG technical program expanded abstracts. Soc Explor Geophys 1994:422–424
  • 13. Fairhead JD, Williams SE, Flanagan G (2004) Testing magnetic local wavenumber depth estimation methods using a complex 3D test model. In: SEG, Expanded Abstracts, pp 742–745
  • 14. Fedi M, Florio G, Cascone L (2012) Multiscale analysis of potential fields by a ridge consistency criterion: the reconstruction of the Bishop basement. Geophys J Int 188(1):103–114. https://doi.org/10.1111/j.1365-246X.2011.05259.x
  • 15. Fedi M (2016) An unambiguous definition of the structural index. In: SEG Technical Program Expanded Abstracts 2016. Society of Exploration Geophysicists, pp 1537–1541
  • 16. Fitzgerald D, Reid A, Mcinerney P (2004) New discrimination techniques for euler deconvolution. Comput Geosci 30(5):461–469. https://doi.org/10.1016/j.cageo.2004.03.006
  • 17. Gerovska D, Araúzo-Bravo MJ (2003) Automatic interpretation of magnetic data based on Euler deconvolution with unprescribed structural index. Comput Geosci 29(8):949–960. https://doi.org/10.1016/S0098-3004(03)00101-8
  • 18. Gerovska D, Stavrev P, Araúzo-Bravo M (2005) Finite-difference Euler Deconvolution Algorithm applied to the interpretation of magnetic data from northern Bulgaria. Pure Appl Geophys 162:591–608. https://doi.org/10.1007/s00024-004-2623-1
  • 19. Gerovska D, Araúzo-Bravo MJ, Stavrev P et al (2010a) MaGSoundDST — 3D automatic inversion of magnetic and gravity data based on the differential similarity transform. Geophysics 75(1):L25. https://doi.org/10.1190/1.3298619
  • 20. Gerovska D, Araúzo-Bravo MJ, Whaler K et al (2010b) Three-dimensional interpretation of magnetic and gravity anomalies using the finite-difference similarity transform. Geophysics 75(4):L79–L90. https://doi.org/10.1190/1.3453765
  • 21. Hansen RO, Suciu L (2002) Multiple-source euler deconvolution. Geophysics 67(67):525–535. https://doi.org/10.1190/1.1468613
  • 22. Hirsch DM, Babcock RS (2009) Spatially heterogeneous burial and high-P/T metamorphism in the Crescent Formation, Olympic Peninsula, Washington. Am Min 94(8–9):1103–1110. https://doi.org/10.2138/am.2009.3187
  • 23. Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67. https://doi.org/10.1080/00401706.1970.10488634
  • 24. Hsu SK (2002) Imaging magnetic sources using Euler’s equation. Geophys Prospect 50(1):15–25. https://doi.org/10.1046/j.1365-2478.2001.00282.x
  • 25. Jekeli C (2009) On methods to select solutions in Euler deconvolution of gravitation and gradient measurements. Stud Geophys Geod 53:443–457. https://doi.org/10.1007/s11200-009-0033-7
  • 26. Johnson SY, Blakely RJ, Stephenson WJ et al (2004) Active shortening of the Cascadia forearc and implications for seismic hazards of the Puget Lowland. Tectonics. https://doi.org/10.1029/2003TC001507
  • 27. Keating PB (1998) Weighted Euler deconvolution of gravity data. Geophysics 63(5):1595–1603. https://doi.org/10.1190/1.1444456
  • 28. Lamb AP, Liberty LM, Blakely RJ et al (2012) Western limits of the Seattle fault zone and its interaction with the Olympic Peninsula, Washington. Geosphere 8(4):915–930. https://doi.org/10.1130/GES00780.1
  • 29. Liu Q, Yao C, Zheng Y (2019a) Euler deconvolution of potential field based on damped least square method. Chin J Geophys (in Chinese) 62(10):3710–3722. https://doi.org/10.6038/cjg2019M0431
  • 30. Liu Q, Yao C, Zheng Y (2019b) A new method to select the best euler solutions based on the angle variation. In: 81th EAGE Conference and Exhibition 2019
  • 31. Melo FF, Barbosa VCF (2018) Correct structural index in Euler deconvolution via base-level estimates. Geophysics 83(6):J87–J98. https://doi.org/10.1190/geo2017-0774.1
  • 32. Melo FF, Barbosa VC, Uieda L et al (2013) Estimating the nature and the horizontal and vertical positions of 3D magnetic sources using Euler deconvolution. Geophysics 78(6):J87–J98. https://doi.org/10.1190/geo2012-0515.1
  • 33. Mikhailov V, Galdeano A, Diament M, Gvishiani A, Agayan S, Bogoutdinov S, Graeva E, Sailhac P (2003) Application of artificial intelligence for Euler solutions clustering. Geophysics 68:168–180. https://doi.org/10.1190/1.1543204
  • 34. Mushayandebvu MF, Lesur V, Reid AB et al (2004) Grid Euler deconvolution with constraints for 2D structures. Geophysics 69(2):489–496. https://doi.org/10.1190/1.1707069
  • 35. Neil C, Whaler KA, Reid AB (1991) Extensions to Euler’s method for three-dimensional potential field interpretation. In: 53rd EAEG meeting, Florence, Italy, Expanded Abstracts pp 416–417
  • 36. Pasteka R (2006) The role of the interference polynomial in the Euler deconvolution algorithm. Boll Geofis Teor Appl 47(1–2):171–180
  • 37. Pham LT, Van Vu T, Le Thi S et al (2020) Enhancement of potential field source boundaries using an improved logistic filter. Pure Appl Geophys 177(11):5237–5249. https://doi.org/10.1007/s00024-020-02542-9
  • 38. Reid AB (2007) Euler deconvolution. In: Gubbins D, Herrero-Bervera E (eds) Encyclopedia of geomagnetism and paleomagnetism. Springer, Dordrecht
  • 39. Reid AB, Allsop JM, Granser H, Millett AJ et al (1990) Magnetic interpretation in three dimensions using euler deconvolution. Geophysics 55(1):80–91. https://doi.org/10.1190/1.1442774
  • 40. Reid AB, Ebbing J, Webb SJ (2014) Avoidable Euler Errors–the use and abuse of Euler deconvolution applied to potential fields. Geophys Prospect 62(5):1162–1168. https://doi.org/10.1111/1365-2478.12119
  • 41. Reid A, FitzGerald D, Flanagan G (2005) Hybrid Euler magnetic basement depth estimation: Bishop 3D tests. In: SEG, Expanded Abstracts, pp 671–673
  • 42. Saltus RW, Blakely RJ, Haeussler PJ, Wells RE (2005) Utility of aeromagnetic studies for mapping of potentially active faults in two forearc basins: puget Sound, Washington, and Cook Inlet, Alaska. Earth Planets Space 57(8):781–793. https://doi.org/10.1186/BF03351857
  • 43. Sherrod BL, Blakely RJ, Weaver CS et al (2008) Finding concealed active faults: extending the southern Whidbey Island fault across the Puget Lowland, Washington. J Geophys Res Solid Earth. https://doi.org/10.1029/2007JB005060
  • 44. Silva JBC, Barbosa VCF (2003) 3D Euler deconvolution: theoretical basis for automatically selecting good solutions. Geophysics 68(6):1962–1968. https://doi.org/10.1190/1.1635050
  • 45. Stavrev PY (1997) Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies. Geophys Prospect 45(2):207–246. https://doi.org/10.1046/j.1365-2478.1997.00331.x
  • 46. Strang G (1993) Introduction to linear algebra. Wellesley-Cambridge Press, Wellesley, MA
  • 47. Thompson DT (1982) EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47(1):31. https://doi.org/10.1190/1.1441278
  • 48. Ugalde H, Morris WA (2010) Cluster analysis of Euler deconvolution solutions: new filtering techniques and geologic strike determination. Geophysics 75(3):L61–L70. https://doi.org/10.1190/1.3429997
  • 49. Williams S, Fairhead JD, Flanagan G (2002) Realistic models of basement topography for depth to magnetic basement testing. In: SEG technical program expanded abstracts 2002. Society of Exploration Geophysicists, pp 814–817. https://doi.org/10.1190/1.1817384
  • 50. Williams SE, Fairhead JD, Flanagan G (2005) Comparison of grid Euler deconvolution with and without 2D constraints using a realistic 3D magnetic basement model. Geophysics 70(3):L13–L21. https://doi.org/10.1190/1.1925745
  • 51. Yao C, Guan Z, Wu Q (2004) An analysis of euler deconvolution and its improvement. Geophys Geochem Explor. https://doi.org/10.3969/j.issn.1000-8918.2004.02.017
  • 52. Zhang C, Mushayandebvu MF, Reid AB et al (2000) Euler deconvolution of gravity tenso gradient data. Geophysics 65(2):512–520. https://doi.org/10.1190/1.1444745
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd46edcc-99e4-4550-a4ce-87d48b4e4652
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.