
Feature-Based Procedural Generation of Adjustable
Game Content

Izabella Antoniuk, Przemysław Rokita
Warsaw University of Technology,
Institute of Computer Science,
Nowowiejska 15/19, 00-665, Warsaw, Poland,
e-mail: I.Antoniuk@stud.elka.pw.edu.pl
e-mail:P.Rokita@ii.pw.edu.pl

This paper describes a method, for procedural content generation, allowing alteration of object during generation process, as well as further modifi-
cations of object after it was created. Most of existing algorithms either require adjustment of unintuitive data and parameters, or don’t allow for
further alteration of created object. Such outcomes are unsatisfactory for most of game designers. We offer our solution for this problem and identify
some possible future directions of our research.

Key words: computer games, procedural content generation.

Introduction

Game worlds have grown tremendously in detail and visual
realism. Some of them are vast, others fascinate with in-
credible level of detail and realism, presenting beautiful
landscapes and believable settlements.

At the same time, all of those game worlds require con-
siderable amount of time to create and adjust. Most of
game objects, including landscapes, are created by hand,
taking days if not weeks to complete. More and more often
game designers need to either reduce level of detail for par-
ticular objects, or decrease amount of those objects.

Procedural content generation is a vast topic, contain-
ing series of procedures, allowing creation of different parts
of game worlds. Those procedures allow for fast and de-
tailed generation of specific content, in huge amounts, usu-
ally much faster and with grater amount of detail, than any
human designer can maintain.

Unfortunately, most of those methods, has some major
drawbacks, at least from designers point of view. While de-
tailed and suitable for their defined application, those al-
gorithms require specific, and usually unintuitive data. At
the same time object, once generated, leaves very little
place(if it does at all)for any modifications of its appearance
or adjustment of details. Usually any modification requires
regenerating entire object – an operation, that with com-
plex models can take considerable amount of time, without
guaranteeing better results.

In this paper we present an approach for procedural con-
tent generation, allowing not only easy maintaining of object
data, but also adjustment of different parts of this object, or
it’s corresponding textures and additional details. In our work

we consider both manual adjustments, as well as regenerating
or automatically correcting selected parts of object. As a test
platform for our algorithms we use Blender 2.68.

The rest of the paper is organized as follows. In section
2, we review other works, related to our research. Section
3 presents an overview of our method and describe ob-
tained results. In section 4 we discuss some possible future
adjustments and research directions. Finally we conclude
our work in section 5.

Related work

Procedural generation of various elements has a signifi-
cantly long tradition in the field of computer graphics. In
this section we analyze previous works related to our re-
search goals and methods, as well as most popular algo-
rithms for procedural generation of different 3D virtual
words elements. For detailed study of various procedural
generation procedures see [1, 2].

Object generation and modification
Building terrain is one of most obvious applications of pro-
cedural content generation in many fields, computer games
included. Therefore generating various areas with different
properties and constraints is one of better examined subjects.

In article [3], authors describe an algorithm for gener-
ating various terrains, that meet specific, selected by the de-
signer, properties, using semantic constraints. For example,
one might decide, that two points on the map need to be
connected by road, or stay in clear line of sight.

[4] presents an integration of procedural modeling and
manual editing, allowing user high level of control over

El
ec

tr
on

ic
s,

 T
el

ec
om

m
un

ic
at

io
ns

 a
nd

 In
fo

rm
at

ic
s

21

Izabella Antoniuk, Przemysław Rokita

generated content, and easy way of regenerating and ad-
justing created terrains(like regenerating a road, so that it
will pass through nearby city).

[5] describes an application for creating military train-
ing simulations, allowing for easy and intuitive terrain
modifications, as well as fast creation of maps and their
properties.

Article [6] presents method of generating terrain, using
Delaunay triangulation for maintaining mesh complexity
appropriate to required level of detail. Algorithm also con-
tains stenciling and stitching methods, for modifying cre-
ated terrain by adding objects such as roads, tracks, etc.

While generating game content, it is equally important
to maintain terrain correctness, especially if after producing
terrain, player should be able to reach certain places. In [7]
authors presents a method for evaluating level quality, based
on genetic algorithm and some chosen properties.

There are also many other methods, for generating var-
ious terrains, based on height maps, L-systems, genetic al-
gorithms or other methods, giving satisfactory and detailed
results [1,2,8], as well as variety of combinations of above.
For example, in [9] authors present a method, to generate
pseudo-infinite cities, using seeds as a base for content gen-
eration. Another interesting issue is dungeon generation, pre-
sented in article [10]. This problem is rather specific and
contains many issues, that other terrains do not posses. At
the same time, the way most dungeons are built, allows for
better control in generating them, giving interesting results.

Terrain generation is only one aspect of creating beau-
tiful and believable terrains. Next step is generating various
objects to place through the scene, such as rocks [11] or
vegetation [13].

Another interesting issue presented in [13] is manipu-
lating object mesh, both globally and locally, for animation
purposes. Described method givers realistic results for pre-
sented examples, and compares them without other exist-
ing methods.

Geometry images and textures
Geometry images can be defined as a 2D representation of
3D model shape. There are various methods corresponding
to generation of those images, as well as their application
to object modeling.

In [14] authors describe fast and scalable method con-
taining procedural geometry mapping and ray-dependant
grammar development, for generating detailed geometries
in render-time, in this case applied for building facades.

Another issue is generation and application of height
maps. While elevation maps can be quite adequate for de-
scribing ground shape, they certainly have some drawbacks.
In [15] authors describe method for representing compli-
cated geometries, using solid height-map sets, which allow
representation of object with many overlapping layers and
multi-level terrains.

Textures are another, quite widely described problem,
considering both their generation, and application to dif-
ferent objects. For further reference in this topic see [1, 8].

Constraints and layout solving
Constraints, in procedural content generation, can be tools,
to define desired properties of generated objects. Based on
object type, they can define some terrain properties [3, 4,
7], or characteristics of an object, that is later placed on
scene [16].

While generating some simple geometry is not very
complicated, modeling more complex and detailed objects
is quite a different case.

One of problems in this type of generation is large
amount of calculations required to obtain satisfactory re-
sults, especially if we want to produce results in real time.
Other is way of representing and maintaining large
amounts of data, required to such operations [14]. Some
known methods of generating such objects involve fractals,
or other mathematical functions [8], as well as L-systems
or genetic algorithms [7].

Placement of those objects on generated terrain, both
in building interiors, and open spaces is another issue.

In [16] authors describe a method for placing objects
in the building interiors, based on some constraints as-
signed to objects, as well as their placement relatively to
other objects on the scene, or such things as walls, doors
or other elements.

There are also methods for creating and placing object,
based on some example presented by the user [17]. De-
scribed algorithm examines different dependences and
properties of given object, such as placement of certain
parts, or their corresponding dimensions, and relying on
such data, creates more complex structures.

Placing of some objects in game, i.e. enemies, can be
modeled by collecting data on player experience, and re-
acting accordingly [18], or by defining some patterns and
rules for placing those objects [19, 20].

Algorithm

In this section we present concepts concerning our method-
ology, as well as it’s current implementation. As a test plat-
form for our algorithms we use Blender 2.68. We chose this
3D modeling application firstly because it contains com-
plete python interpreter, allowing us to easily add needed
functionality. Second reason is that options already avail-
able are sufficient base for our research.

Method
Our method is meant for generation of objects with main
application in computer games, that are both complex and
adjustable by the game designer at every point of their gen-
eration, as well as after obtaining them (see Algorithm 1).

Our algorithm consist two main parts. First one de-
scribes division of a scene depending on predefined steps.

22

Feature-Based Procedural Content Generation of Adjustable Game Content

Currently we consider only equal intervals, due to simplify
needed calculations. Since we are operating in 3D space,
we divide our scene in cuboids of appropriate size (after
calculating our intervals). This allows us for both easy gen-

eration, as well as fragmentation to smaller regions, when
we want to edit part of it. Moreover, by dividing space in
such a way, we are not restricting number of different kinds
of objects, that our algorithm can generate. Example of
mesh, containing generated vertices, already assigned to
faces is shown in Fig. 1.

Second part of our algorithm consist of generating ver-
tices, in alignment described by object type. Depending
from created content, different cuboids will contain infor-
mation about placement of vertices inside considered
model.

Algorithm 2 presents application of our method for
generating few types of terrain: leveled plains or hills(with
altitude at stable level), downward plains or hills(with alti-
tude steadily rising or declining in one direction), and is-
land type of terrain, with edges of object located at lowest
level, and its middle at the highest point.

For each type of terrain, we first select cuboids from the
scene, that will contain information about object vertices,
and then we generate them. Depending from given require-
ments, such generation can be completely random, specified
by some predefined properties, or even introduced by user.

At the end of procedure we save obtained results in text
file. We chose such solution, because we wanted to be able
to easily move our results between computers, without the
need to copy entire blender file. Another reason is that
„.txt” format allows not only simple file relocation, but also
leaves possibility for future adaptations of our method for
other platforms. Another advantage is that such files are
considerably small in size.

Our approach is based on fact, that while procedural
content generation is getting more and more accurate, de-
signers still might want to modify some elements of created
objects, either by regenerating fragments of model, or by
manual adjusting them. Therefore our approach focuses ex-
actly on that.

At every key point of object generation we leave place
for some user adjustments, i.e. after generating points or
faces, also after generating and assigning texture or adding
any other element. Such fragmentation allows for better
control of obtained output, as well as speeds up entire gen-
eration process - it’s much faster to move few vertices, than
to regenerate entire object, until we get satisfactory output.
Another advantage is that, when results are not satisfactory,
we can easily determine which step of generation is at fault
and adjust it accordingly.

Implementation
Object generation algorithm presented in previous section
is rather general and can be applied to any object, by simply
adjusting appropriate functions, but after generating points
and faces we use some of built in Blender functionality, to
proceed. Currently our implementation contains genera-
tion of basic terrain with some randomly placed elements
(rocks and grass), as presented in Algorithm 3.

El
ec

tr
on

ic
s,

 T
el

ec
om

m
un

ic
at

io
ns

 a
nd

 In
fo

rm
at

ic
s

23

Fig. 1. Vertices and faces of generated object

Algorithm 1. Object Generation

Algorithm 2. Locating vertices

Izabella Antoniuk, Przemysław Rokita

After a set of vertices is created, we then use some of
built-in Blender functionality, documentation of which can
be found in [21] in support section, to assign created ver-
tices to faces and generate entire terrain from those faces.

Representation of displacement at given terrain can be
resolved in many ways. In our approach we decided to use
another of Blender tools: displacement modifier. Since
Blender scripting language allows easy access to most of ap-
plications functionality, we just need to call appropriate
procedure for created object

In our case, we are not using displacement map as rep-
resentation of altitude through entire object, but rather
want to modify some of places across the objects, without
affecting general shape. Therefore using height maps in
their basic form may be insufficient. We then decided to
use displacement modifier, to achieve exactly that. Since
that method may operate on user defined texture, it allows
both simple generating of some believable shapes, as well
as easy separation of parts of object with different proper-
ties, by simply assigning different texture. Together with
smooth modifier, we achieved some interesting results. Ex-
ample terrain, both before (top left) and after (top right)
appending displacement modifier is presented at Figure 2.

After creating and applying appropriate displacement
for object, we then assign actual texture. Images used in
this application can be both, generated procedurally or cre-
ated by user, as long as it is a file, saved in format supported
by Blender application. Therefore we can generate displace-
ment map with any chosen properties. Currently we are
using some of procedural textures available in application.
Since they are generated directly into application, they also
allow to follow any introduced changes in real time, with-
out the need to load and reload newly generated texture.
Fig. 2 (bottom) presents fully generated terrain with as-
signed simple texture(created using Blender tools).

After creating object with texture, we then place some
simple objects across the scene, using Blender particle sys-
tem. For this functionality to work we need to assign
weights to our object, deciding placement of different types
of objects we add to the scene.

At this point we generated whole, fully modifiable ob-
ject. Although we predefined some of it’s properties, all of
them can be changed during any step of generation process,
as well as at the end of algorithms operations. Example ter-
rain is presented at Fig. 3.

Future work

The combination of procedural generation and manual
edi ting can greatly improve workflow of game designers.
First attempts have already been made (see [5]), but they
still require a lot of work. Although our approach is still in
early stage of development and requires considerable
amount of work it still promises great results in the future.

24

Fig. 3. Simple terrain with grass and rocks generated using
our method

Fig. 2. Created object(top left), after appending displace-
ment map through appropriate modifier(top right) and
with assigned texture(bottom).

Algorithm 3. Object adjustment

Feature-Based Procedural Content Generation of Adjustable Game Content

We plan to incorporate more available terrains, as well
as append generation of other objects, like buildings or
some of more characteristic, in-game elements.

Another of our goals is to append few sets of various
constraints, to allow better adjustment of created models.
One of functionalities we want to incorporate are rules for
connecting different terrains, and constraints for placing
different objects (plants, rocks, buildings), through the
scene, other than using weight maps.

In this case we were using some built-in Blender tools,
for generating textures and modifying object but we also
consider appending some external methods for this tasks,
to achieve grater level of control, as well as to improve over-
all performance. We would like to at least add a method
for creating texture and displacement map, that would be
based on basic terrain shape, or other properties, specified
by user.

We also plan to work on our data management algo-
rithm. Currently it allows only for even intervals along each
axis, and requires that each cuboids contains only one vert.
We would like to explore other possibilities and compare
them with our current solution.

Another of our goals is to adjust our method for other
3D modeling environments.

Conclusions

In this paper we presented a method for procedural gener-
ation of objects, that are both complex and adjustable at
every step of their creation.

Out program was created in Blender application and
uses some of it functionality.

Our program should be considered mainly as a base for
further research. Even in such basic shape it still allows for
creation of elements, that can be used in computer games.
Currently number of available object is rather limited, but
our data representation and generation algorithm do not
restrict types of objects, that can be created. Another big
advantage is that our method allows for great amount of
object adjustments, both by user and algorithmic regener-
ation of its parts.

There are still very few procedural algorithms, that
allow for modification of created content, that does not
contain re-generating an object and presented method is
sufficient for this application.

Bibliography

[1] Hendrikx M., Mejer S., Velden van der J., Iosup A.: Procedural
content generation for games: a survey. ACM Trans. Multime-
dia Comput. Commun. Appl., Volume 9 Issue 1(2013)

[2] Smelik R. M., Tutenel T., Bidarra R., Benes B.: A survey on
procedural modelling for virtual worlds. Computer Graphics
Fo rum(2014)

[3] Smelik R. M., Galka K., Kraker de K. J., Kujiper F., Bidarra
R.: Semantic constraints for procedural generation of virtual
worlds. Proceedings of the 2nd International Workshop on
Procedural Content Generation in Games(2011)

[4] Smelik R. M., Tutenel T., Kraker de K. J., Bidarra R.: A declar-
ative approach to procedural modelling of virtual worlds. Com-
puters and Graphics, Volume 35, Issue 2, 352--363(2010)

[5] Smelik R. M., Tutenel T., Kraker de K. J., Bidarra R.: Declar-
ative Terrain modeling for Military Training Games. Interna-
tional Journal of Computer Games Technology(2010)

[6] Raman S., Jianmin Z.: Efficient Terrain Triangulation and
Modification Algorithms for Game Applications. International
Journal of Computer Games Technology(2008)

[7] Mourato F., Santos dos M. P., Bidarra R.: Automatic level gen-
eration for platform videogames using genetic algorithms. Pro-
ceedings of the 8th International Conference on Advances in
Computer Entertainment Technology(2011)

[8] Ebert D. S., Kenton Musgrave F., Peachey D., Perlin K., Wor-
ley S.: Texturing and Modelling: A Procedural Approach, (3rd
ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (2002)

[9] Greuter S., Parker J., Stewart N., Leach G.: Real-time proce-
dural generation of 'pseudo infinite' cities. Proceedings of
GRAPHITE (2003)

[10] Linden van der R., Lopes R., Bidarra R.: Procedural generation
of dungeons. Accepted for publication in IEEE Transactions
on Computational Intelligence and AI in Games TCI-
AIG(2014)

[11] Dart I. M., Rossi De G., Togelius J.: SpeedRock: procedural
rocks through grammars and evolution 11. Proceedings of the
2nd International Workshop on Procedural Content Genera-
tion in Games(2011).

[12] Prusinkiewicz P., Lindenmayer A.: The algorithmic beauty of
plants. New York, NY, USAL Springer-Verlag, (1990).

[13] Yoshiyasu Y., Yamazaki N.: Pose space surface manipulation.
International Journal of Computer Games Technology(2012)

[14] Marvie J. E., Gautron P., Hirtzlin P., Sourimant G.: Render-
time procedural per-pixel geometry generation. Proceedings of
Graphic Interface(2011)

[15] Santos P., Toledo de R., Gattas M.: Solid Height-maps Sets:
modelling and visualisation. Proceedings of the ACM Sympo-
sium on Solid and Physical Modeling,(2008)

[16] Tutenel T., Bidarra R., Smelik R. M., Kraker de K. J.: Rule
based layout solving and its application to procedural interior
generation. Proceedings of the Workshop on 3D Advanced
Media in Gaming and Simulation(2009)

[17] Merrell P., Manocha D.: Model Synthesis: A General Proce-
dural Modeling Algorithm. IEEE Transactions on Visualization
and Computer Graphics, vol.17(2011)

[18] Lopes R., Hilf K., Jayapalan L., Bidarra R.: Mobile adaptive
procedural content generation. Proceedings of Workshop on
Procedural Content Generation for Games(2013)

[19] Dahlskog S., Togelius J.: Patterns and procedural content gen-
eration: revisiting Mario in world 1 level 1. Proceedings of the
First Workshop on Design Patterns in Games(2012)

[20] Smith G., Othenin-Girard A., Whitehead J., Wardrip-Fruin
N.: PCG-based game design: creating Endless Web. Proceed-
ings of the International Conference on the Foundations of
Digital Games(2012)

[21] Blender home page: http://www.blender.org/ (30.09.2014)

MSc Izabella ANTONIUK – MSc (2012), PhD student at
Institute of Computer Science, Warsaw University of Technol-
ogy. Research interests: computer science and information tech-
nology, coputer graphics, procedural generation and artificial
intelligence for application in computer games.

El
ec

tr
on

ic
s,

 T
el

ec
om

m
un

ic
at

io
ns

 a
nd

 In
fo

rm
at

ic
s

25

Izabella Antoniuk, Przemysław Rokita

Prof. Przemysław Rokita – MSc (1985), PhD (1993), DSc
(2000); Professor at the Institute of Computer Science of the
Warsaw University of Technology. Member of SPIE, ACM,
IEEE. Recipient of the Minister of Education Award (1995);
Rector’s Award in Science (2001); Laureate of the Golden
Chalk Distinction for excellence in teaching – WUT (2005),
(2006); Head of Computer Graphics Division (2013-); Mem-
ber of the Faculty Council (2000-); Member of the Faculty
Council Committee for Scientific Research (2008-); Research
interests: computer science and information technology, digital
image processing, computer graphics, image perception; Previ-
ously affiliated as visiting scientist and professor at: the Max-
Planck-Institut für Informatik – Computer Graphics Depart ment

(Germany), the University of Aizu (Japan), Hiroshima Insti-
tute of Technology (Japan), Hiroshima Prefectural University
(Japan), Imperial College of Science, Technology and Medicine
(United Kingdom); Member of Program Committees and re-
viewer for many international conferences and journals, in-
cluding: IEEE Computer Graphics and Applications, The
Visual Computer, Real-Time Imaging, Opto-Electronics Re-
view, Journal of Imaging Science and Technology, IEEE Trans-
actions on Circuits and Systems for Video Technology, IEEE
Transactions on Multimedia, ACM Siggraph, Eurographics,
High Performance Graphics; Expert and consultant at Na-
tional Centre for Research and Development, National Science
Centre, Ministry of Science and Higher Education.

26

