PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biofouling reduction for improvement of depth water filtration. Filter production and testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water is a strategic material. Recycling is an important component of balancing its use. Deep-bed filtration is an inexpensive purification method and seems to be very effective in spreading water recovery. Good filter designs, such as the fibr ous filter, have high separation efficiency, low resistance for the up-flowing fluid and high retention capacity. However, one of the substantial problems of this process is the biofouling of th e filter. Biofouling causes clogging and greatly reduces the life of the filter. Therefore, the melt-blown technique was used for the formation of novel antibacterial fibrous filters. Such filters are made of polypropylene composites with zinc oxide and silver nanoparticles on the fiber surface. These components act as inhibitors of bacterial growth in the filter and were tested in laboratory and full scale experiments. Antibacterial/bacteriostatic tests were performed on Petri dishes with E. coli and B. subtilis. Full scale experiments were performed on natural river water, which contained abiotic particles and mutualistic bacteria. The filter performance at industrial scale conditions was measured using a particle counter, a flow cytometer and a confocal microscope. The results of the experiments indicate a significant improvement of the composite filter performance compared to the regular fibrous filter. The differences were mostly due to a reduction in the biofouling effect.
Rocznik
Strony
319--330
Opis fizyczny
Bibliogr. 19 poz., il.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Andrade P.F., de Faria A.F., Oliveira S.R., Arruda M.A.Z., do Carmo Gonçalves M., 2015. Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Res., 81, 333-342. DOI: 10.1016/j.watres.2015.05.006.
  • 2. Berg H.C., 1975. Bacterial behaviour. Nature, 254, 389-392. DOI: 10.1038/254389a0.
  • 3. Bodasinski J., Gradon J., Kmuk P., Ruminski W., 2015. Composite filters structures and method of obtaining the composite filters structures. Patent EP2665583BI.
  • 4. Camper A.K., LeChevallier M.W., Broadaway S.C., McFeters G.A., 1985. Growth and persistence of pathogens on granular activated carbon filters. Appl. Environ. Microbiol., 50 (6): 1378-1382.
  • 5. Gac J., Gradon L., 2015. Towards a numerical model of bacterial filtration in fibrous filters. Chem. Process Eng., 36, 89-99. DOI: 10.1515/cpe-2015-0007.
  • 6. Gradon L., Podgorski A., Balazy A., 2005. Filtration of nanoparticles in the nanofibrous filters. FILTECH EUROPE 2005, 5, 178-185.
  • 7. Lazarova V., Manem J., 1995. Biofilm characterization and activity analysis in water and wastewater treatment. Water Res., 29, 2227-2245. DOI: 10.1016/0043-1354(95)00054-O.
  • 8. Mg Y.H., Leung Y.H., Liu F.Z., Ng A.M.C., Gao M.H., Chan C.M.N., Djurisic A.B., Leung F.C.C., Chan W.K., 2013. Antibacterial activity of ZnO nanoparticles under ambient illumination – The effect of nanoparticle properties. Thin Solid Films, 542, 368-372. DOI: 10.1016/j.tsf.2013.05.167.
  • 9. Nowak B., Bojarska M., Skowronski J., Piatkiewicz W., 2014. Antibacterial and antifouling properties of polypropylene membranes modified with zinc oxide nanowires, In: Konieczny K., Korus I. (Eds.), Membranes and Membrane Processes in Environmental Protection. Monograph of the Environmental Engineering Committee. Polish Academy of Sciences, Warsaw-Gliwice, 118, 209-220.
  • 10. Ochi J., Vernoux J.F., 1999. A two-dimensional network model to simulate permeability decrease under hydrodynamic effect of particle release and capture. Transp. Porous Media, 37, 303-325. DOI: 10.1023/A:1006690700000.
  • 11. Ong Y.L., Razatos A., Georgiou G., Sharma M.M., 1999. Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir, 15, 2719-2725. DOI 10.1021/la981104e.
  • 12. Podgorski A., Balazy A., Gradon L., 2006. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem. Eng. Sci., 61, 6804-6815. DOI: 10.1016/j.ces.2006.07.022.
  • 13. Selomulya C., Jia X., Williams R.A., 2005. Direct prediction of structure and permeability of flocculated structures and sediments using 3D tomographic imaging. Chem. Eng. Res. Des., 83 (A7), 844–852. DOI: 10.1205/Cherd.04330.
  • 14. Tien C., 2012. Principles of filtration. Elsevier, Oxford, U.K.
  • 15. Tien C., Ramarao B.V., 2011. Granular filtration of aerosols and hydrosols. Elsevier, Oxford, U.K.
  • 16. USEPA, 2004. Guidelines for Water Reuse. Washington DC.
  • 17. Van der Merwe R., Hammes F., Lattermann S., Amy G., 2014. Flow cytometric assessment of microbial abundance in the near-field area of seawater reverse osmosis concentrate discharge. Desalination, 343, 208–216. DOI: 10.1016/j.desal.2014.01.017.
  • 18. Williams C.J., Edyvean R.G.J., 1998. An investigation into the filtration of biological materials: Why is it such a problem?. Filtr. Sep., 33, 507–512. DOI: 10.1016/S0015-1882(98)80025-6.
  • 19. You J., Zhang Y., Hu Z., 2011. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles. Colloids Surf. B, 85, 161–167. DOI: 10.1016/j.colsurfb.2011.02.023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd398350-b92a-4bc0-accc-20563bc262b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.