PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd modeli numerycznych zjawisk fizycznych występujących w procesach ekstrakcji jonowymiennej metali

Identyfikatory
Warianty tytułu
EN
Review of numerical models of processes in ion-exchange solvent extraction
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono przegląd modeli numerycznych, stosowanych do modelowania zjawisk fizycznych zachodzących w procesach ekstrakcji jonowymiennej metali. Skrótowo omówiony został sam proces oraz najistotniejsze zjawiska. Omówiono metody badawcze, pozwalające na wyznaczenie parametrów modeli numerycznych. Zaprezentowano prace, opisujące modele numeryczne przepływów laminarnych i turbulentnych, powstawania dyspersji dwóch niemieszających się cieczy oraz ich grawitacyjnej separacji, polimeryzacji oraz zachowania powierzchni swobodnej.
EN
The first step of multiscale model design is choosing numerical models for all significant phenomena. It this paper, the review of existing numerical models for phenomena present in ion-exchange solvent extraction is done. Modelling of this process is focused mainly on calculating of a composition of phases leaving a reactor. Phenomena influencing on a final result are: a flow of two, immiscible fluids, a dispersion of one of them, a gravitational separation and an ion exchange on phase’s boundaries itself. Each of them should be described with a suitable numerical model. A macroscopic flow is usually described with Computational Fluid Dynamic (CFD). An addition of microscopic effects, like bubbles topology and surface tensions allows modelling of dispersion and separation, as well as improves a reliability of a fluid flow model. In a spatial scale comparable with a size of dispersed bubbles, diffusion and an ion exchange are present. Some additional models for phenomena like a surface eddy and a polymerization should be also considered. Due to a lack of a comprehensive description of modelling of an ion-exchange solvent extraction in the literature, models for all phenomena were reviewed separately. Modelling of a two-fluid flow could treat both phases separately or as a single phase with an additional description of its phase composition and a relative movement of phases. The eddy over the mixing zone could be computed basing on CFD techniques, but due to instabilities on the free surface, very short time steps are enforced. Empirical models, based on experimental data are less accurate, but much more stable. There are no models of polymerization in the solvent extraction context in the literature. Available models were developed for processes, where a polymerization is awaited and they are not applicable in described case. Modelling of diffusion and an ion exchange in the microscale are believed to be very important, but an exact description of a dispersion topology is a necessary condition. In fact, it is not practically possible to calculate such a topology with a presently available computing power. The review, presented in this paper will be used to develop the multiscale model for an ion-exchange solvent extraction. It will be based on Agile Multiscale Modelling (AM3), developed by Authors.
Rocznik
Strony
390--394
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • AGH Akademia Górniczo-Hutnicza, Wydział Metali Nieżelaznych, al. Mickiewicza 30, 30-059 Kraków
autor
  • Instytut Metali Nieżelaznych, Gliwice
Bibliografia
  • 1. Alcamo R., Micale G., Grisafi F., Brucato A., Ciofalo M.: Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine. Chem. Eng. Sci. 2005, t. 60, s. 2303-2316.
  • 2. Bain E. D., Turgman-Cohen S., Genzer J.: Progress in Computer Simulation of Bulk, Confined, and Surface-initiated Polymerizations. Macromol. Theory Simul. 2013, t. 22, s. 8-30.
  • 3. Derksen J . J ., Van D en A kker H. E . A .: Multi-Scale Simulations of Stirred Liquid–Liquid Dispersions. Chem. Eng. Res. Des. 2007, t. 85, s. 697-702.
  • 4. Feng W., Zai-Sha M.: Numerical and Experimental Investigation of Liquid−Liquid Two-Phase Flow in Stirred Tanks, 2005.
  • 5. Gawąd J., Pietrzyk M.: Application of CAFE Multiscale Model to Description of Microstructure Development during Dynamic Recrystallization. Arch. Metall. Mater. 2007, t. 52, s. 257-266.
  • 6. Jahoda M., Mostek M., Kukukova A., Machoň V.: CFD Modelling of Liquid Homogenization in Stirred Tanks with One and Two Impellers Using Large Eddy Simulation. Chem. Eng. Res. Des. 2007, t. 85, s. 616-625.
  • 7. Joshi J. B., Nere N. K., Rane C. V, Murthy B. N., Mathpati C. S., Patwardhan A. W., et al.: CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers. The Canadian Journal of Chemical Engineering 2011, t. 89, s. 23-82.
  • 8. Khopkar A. R., Kasat G. R., Pandit A. B., Ranade V. V.: CFD simulation of mixing in tall gas–liquid stirred vessel: Role of local flow patterns. Chem. Eng. Sci. 2006, t. 61, s. 2921-2929.
  • 9. Khopkar A. R., Ranade V. V.: CFD simulation of gas-liquid stirred vessel: VC, S33, and L33 flow regimes. AIChE J. 2006, t. 52, s. 1654-1672.
  • 10. Kopernik M., Milenin A.: Two-scale finite element model of multilayer blood chamber of POLVAD_EXT. Archives of Civil and Mechanical Engineering 2012, t. 12, s. 178-185.
  • 11. Lamarque N., Zoppé B., Lebaigue O., Dolias Y., Bertrand M., Ducros F.: Large-eddy simulation of the turbulent free-surface flow in an unbaffled stirred tank reactor. Chem. Eng. Sci. 2010, t. 65, s. 4307-4322.
  • 12. Leopold A. A., Coll M. T., Fortuny A., Rathore N. S., Sastre A. M.: Mathematical modeling of cadmium(II) solvent extraction from neutral and acidic chloride media using Cyanex 923 extractant as a metal carrier., Journal of Hazardous Materials 2010, t. 182, s. 903-911.
  • 13. Macioł P.: Application of internal variable convection method for thixotropy modelling. Steel Res. Int. 2008, t. 79, s. 332-339.
  • 14. Macioł P., Gawąd J., Kuziak R., Pietrzyk M.: Internal Variable and Cellular Automata-Finite E lement M odels o f H eat Treatment. Int. J. Multiscale Comput. Eng. 2010, t. 8, s. 267-285.
  • 15. Macioł P., Gotfryd L., Macioł A.: Knowledge based system for runtime controlling of multiscale model of ion-exchange solvent extraction, in AIP Conf. Proc., 2012, s. 125-128.
  • 16. Montante G., Horn D., Paglianti, A.: Gas-liquid flow and bubble size distribution in stirred tanks, 2008, t. 63, s. 2107-2118.
  • 17. Singh K. K., Mahajani S. M., Shenoy K. T., Ghosh S. K.: Representative drop sizes and drop size distributions in A/O dispersions in continuous flow stirred tank, Hydrometallurgy 2008, t. 90, s. 121-136.
  • 18. Vincent S., Larocque J., Lacanette D., Toutant A., Lubin P., Sagaut P.: Numerical simulation of phase separation and a priori two-phase LES filtering, 2008, t. 37, s. 898-906.
  • 19. Zhao Y., Li, X., Cheng J., Yang C., Mao, Z.-S.: Experimental Study on Liquid–Liquid Macromixing in a Stirred Tank. Ind. Eng. Chem. Res. 2011, t. 50, s. 5952-5958.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd37c577-48cd-4d8c-83fc-7ab604db436e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.