PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reduction of CO2 emissions from offshore combined cycle diesel engine-steam turbine power plant powered by alternative fuels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diverse forms of environmental pollution arise with the introduction of materials or energy that exert adverse effects on human health, climate patterns, ecosystems, and beyond. Rigorous emission regulations for gases resulting from fuel combustion are being enforced by the European Union and the International Maritime Organization (IMO), directed at maritime sectors to mitigate emissions of SOx, NOx, and CO2. The IMO envisions the realisation of its 2050 targets through a suite of strategies encompassing deliberate reductions in vessel speed, enhanced ship operations, improved propulsion systems, and a transition towards low and zero-emission fuels such as LNG, methanol, hydrogen, and ammonia. While the majority of vessels currently depend on heavy fuel or low-sulphur fuel oil, novel designs integrating alternative fuels are gaining prominence. Technologies like exhaust gas purification systems, LNG, and methanol are being embraced to achieve minimised emissions. This study introduces the concept of a high-power combined ship system, composed of a primary main engine, a diesel engine, and a steam turbine system, harnessing the energy contained within the flue gases of the main combustion engine. Assumptions, constraints for calculations, and a thermodynamic evaluation of the combined cycle are outlined. Additionally, the study scrutinises the utilisation of alternative fuels for ship propulsion and their potential to curtail exhaust emissions, with a specific focus on reducing CO2 output.
Rocznik
Tom
Strony
71--80
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Poland
autor
  • Gdansk University of Technology, Institute of Naval Architecture and Ocean Engineering, Gdansk, Poland
  • Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
autor
  • PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
Bibliografia
  • 1. A.T. Hoang et al., “Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway,” J. Clean. Prod., vol. 355, p. 131772, Jun. 2022, doi: 10.1016/j.jclepro.2022.131772.
  • 2. M. Julian, “MARPOL 73/78: the International Convention for the Prevention of Pollution from Ships,” Marit. Stud., vol. 2000, no. 113, 2000, doi: 10.1080/07266472.2000.10878605.
  • 3. EC, “Directive 2012/33/EU of the European Parliament and of the Council of 21 November 2012 amending Council Directive 1999/32/EC as regards the sulphur content of marine fuels,” OJ L, 2012.
  • 4. J. Liu, Q. Zhang, H. Li, S. Chen, and F. Teng, “Investment decision on carbon capture and utilisation (CCU) technologies—A real option model based on technology learning effect,” Appl. Energy, vol. 322, 2022, doi: 10.1016/j. apenergy.2022.119514.
  • 5. IMO - Marine Environment Protection Committee, “Reduction of GHG emissions from ships. Fourth IMO GHG Study 2020. MEPC 75/7/15.,” International Maritime Organization. 2020.
  • 6. P. Balcombe et al., “How to decarbonise international shipping: Options for fuels, technologies and policies,” Energy Conversion and Management. 2019, doi: 10.1016/j. enconman.2018.12.080.
  • 7. F. Baldi and A. Coraddu, “Towards halving shipping GHG emissions by 2050: the IMO introduces the CII and the EEXI,” in Sustainable Energy Systems on Ships, 2022.
  • 8. J. Herdzik, “Decarbonization of Marine Fuels—The Future of Shipping,” Energies, vol. 14, no. 14, p. 4311, Jul. 2021, doi: 10.3390/en14144311.
  • 9. A.T. Hoang and V.V. Pham, “A review on fuels used for marine diesel engines,” J. Mech. Eng. Res. Dev., vol. 41, no. 4, pp. 22–32, 2018.
  • 10. M. Dzida and W. Olszewski, “Comparing combined gas tubrine/steam turbine and marine low speed piston engine/ steam turbine systems in naval applications,” Polish Marit. Res., vol. 18, no. 4, 2011, doi: 10.2478/v10012-011-0025-8.
  • 11. W. Olszewski and M. Dzida, “Selected Combined Power Systems Consisted of Self-Ignition Engine and Steam Turbine,” Polish Marit. Res., vol. 25, no. s1, 2018, doi: 10.2478/ pomr-2018-0042.
  • 12. DNV, “Alternative fuels for containerships,” 2022.
  • 13. MAN Diesel & Turbo, “Using Methanol Fuel in the MAN B&W ME-LGI Series,” MAN. 2014.
  • 14. A.T. Hoang, “Waste heat recovery from diesel engines based on Organic Rankine Cycle,” Applied Energy, vol. 231. 2018, doi: 10.1016/j.apenergy.2018.09.022.
  • 15. “National policy framework for the development of alternative fuels infrastructure (in Polish). Ministry of Energy 2017” https://www.gov.pl/web/aktywa-panstwowe/rzad-przyjalkrajowe-ramy-polityki-rozwoju-infrastruktury-paliwalternatywnych-3.
  • 16. D. GL, “Comparison of Alternative Marine Fuels; DNV GL AS Maritime: Høvik, Norway,” 2019.
  • 17. K. Machaj et al., “Ammonia as a potential marine fuel: A review,” Energy Strategy Reviews, vol. 44. 2022, doi: 10.1016/j.esr.2022.100926.
  • 18. S. Giddey, S.P.S. Badwal, C. Munnings, and M. Dolan, “Ammonia as a Renewable Energy Transportation Media,” ACS Sustain. Chem. Eng., 2017, doi: 10.1021/acssuschemeng.7b02219.
  • 19. C.G. Okoye-Chine et al., “Conversion of carbon dioxide into fuels - A review,” Journal of CO2 Utilisation, vol. 62. 2022, doi: 10.1016/j.jcou.2022.102099.
  • 20. I. Domić, T. Stanivuk, L. Stazić, and I. Pavlović, “Analysis of LNG Carrier Propulsion Developments,” J. Appl. Eng. Sci., vol. 20, no. 4, 2022, doi: 10.5937/jaes0-36809.
  • 21. A. Szklo and R. Schaeffer, “Fuel specification, energy consumption and CO2 emission in oil refineries,” Energy, vol. 32, no. 7, 2007, doi: 10.1016/j.energy.2006.08.008.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd33b864-7e4e-43e9-9aab-16dc1fed31e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.