Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is known that nano- and micromechanics require new approaches to right describing of surface-like phenomena which lead to an enhanced energy conversion. In this work, a general form of surface forces that consist of a contribution from both the friction and mobility components has been extended to collect the effects of bulk and surface motion of a fluid. Quite similar impact can be observed for a solid-fluid mixture, where the principle of effective stress for this new type of approach should be considered from the very beginning. The second motivation of our work is to present the multiscale domain of fluid-solid interaction which describes some “emergence effects” for materials with especially high volumetric surface densities.
Czasopismo
Rocznik
Tom
Strony
329--332
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
- Institute of Fluid Flow Machinery, Energy Conversion Department, Polish Academy of Sciences, Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Energy Conversion Department, Polish Academy of Sciences, Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Energy Conversion Department, Polish Academy of Sciences, Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Energy Conversion Department, Polish Academy of Sciences, Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Energy Conversion Department, Polish Academy of Sciences, Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Energy Conversion Department, Polish Academy of Sciences, Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Energy Conversion Department, Polish Academy of Sciences, Gdańsk, Poland
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Gdańsk, Poland
autor
- Institute of Fluid Flow Machinery, Energy Conversion Department, Polish Academy of Sciences, Gdańsk, Poland
Bibliografia
- 1. Badur J., Karcz M. Lemański M., 2011, On the mass and momentum transport in the Navier-Stokes slip layer, Microfluidics and Nanofluidics, 11, 439-449
- 2. Badur J., Ziółkowski P.J., Ziółkowski P., 2015, On the angular velocity slip in nano flows, Microfluidics and Nanofluidics, 19, 191-198
- 3. Banaszkiewicz M., 2015, Multilevel approach to lifetime assessment of steam turbines, International Journal of Fatigue, 73, 39-47
- 4. Banaszkiewicz M., Rehmus-Forc A., 2015, Stress corrosion cracking of a 60 MW steam turbine rotor, Engineering Failure Analysis, 51, 55-68
- 5. Henry C., Minier J.-P., 2014, Progress in particle resuspension from rough surfaces by turbulent flows, Progress in Energy and Combustion Science, 45, 1-53
- 6. Hooman K., 2008, Heat and fluid flow in a rectangular microchannel filled with a porous medium, International Journal of Heat and Fluid Flow, 51, 5804-5810
- 7. Kowalewski T.A., Nakielski P., Pierini F., Zembrzycki K., Pawłowska S., 2016, Micro and nano fluid mechanics, [In:] Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, M. Kleiber et al. (Eds.), 27-34
- 8. Kucaba-Piętal A., Walenta Z., Peradzyński Z., 2009, Molecular dynamics computer simulation of water flows in nanochannels, Bulletin of the Polish Academy of Sciences Technical Sciences, 57, 55-61
- 9. Lemański M., Karcz M., 2008, Performance of lignite-syngas operated tubular Solid Oxide Fuel Cell, Chemical and Process Engineering, 29, 233-248
- 10. Lewandowski T., Ochrymiuk T., Czerwińska J., 2011, Modeling of heat transfer in microchannel gas flow, ASME Journal of Heat Transfer, 133, 022401-1
- 11. Morini G.L., Yang Y., Chalabi H., Lorenzini M., 2011, A critical review of the measurement techniques for the analysis of gas microflow through microchannels, Experimental Thermal and Fluid Science, 35, 849-893
- 12. Nakielski P., Pawłowska S., Pierini F., Liwińska W., Hejduk P., Zembrzycki K., Zabost E., Kowalewski T., 2015, Hydrogel nanofilaments via core-shell electrospinning, PLoS ONE, 10, 6, e0129816, DOI: 10.1371/journal.pone.0129816
- 13. Nitoń P., Żywociński A., Fiałkowski M., Hołyst R., 2013, A “nano-windmill” driven by a flux of water vapour: a comparison to the rotating ATPase, Nanoscale, 5, 9732-9738
- 14. O’Hare L., Lockerby D.A., Reese J.M., Emerson D.R., 2007, Near-wall effects in rarefied gas micro-flows: some modern hydrodynamic approaches, International Journal of Heat and Fluid Flow, 28, 37-43
- 15. Pęcherski R.B., Szeptyński P., Nowak M., 2011, An extension of Burzyński hypothesis of material effort accounting for the third invariant of stress tensor, Archives of Metalurgy and Materials, 56, 2, 503-508
- 16. Reese M., Gallis M.A., Lockerby D.A., 2003, New directions in fluid dynamics: non-equilibrium aerodynamic and microsystem flows, Philosophical Transactions A: Mathematical, Physical and Engineering Sciences, 361, 2967-2988
- 17. Thomson P.A., Trojan S.M., 1997, A general boundary condition for liquid flow at solid surface, Nature, 389, 360-362
- 18. Vadillo G., Fernandez-Saez J., Pęcherski R.B., 2011, Some applications of Burzynski yield condition in metal plasticity, Materials and Design, 32, 628-635
- 19. Vignoles G.L., Charrier P., Preux C., Dubroca B., 2008, Rarefied pure gas transport in non-isothermal porous media: effective transport properties from homogenization of the kinetic equation, Transport in Porous Media, 73, 2, 211-232
- 20. Ziółkowski P., Badur J., 2014, Navier number and transition to turbulence, Journal of Physics: Conference Series, 530, 012035, DOI: 10.1088/1742-6596/530/1/012035
Uwagi
EN
Short Communications
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd2c0b12-2dfd-4a7e-af78-644f652b0fd7