PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure based flow curve modeling of high-Mn steels with TWIP and TRIP effect

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Uwzględnienie mikrostruktury w modelowaniu krzywych płynięcia wysoko-manganowych stali z efektem TWIP i TRIP
Języki publikacji
EN
Abstrakty
EN
In the present work a microstructural model based on representative volume elements (RVE) is proposed for high manganese steels with TWIP and TRIP effect. The polycrystalline structure is generated by spatial discretization of the RVE in three-dimensional Voronoi tessellations. For the hardening behavior a constitutive material model is used based on the evolution of dislocation, twin and epsilon-martensite density. The plastic deformation is investigated numerically using periodic displacement boundary conditions. In addition to the parameters of temperature and microstructure the influence of the chemical heterogeneity is investigated. The experimental verification of the numerical results is done by uniaxial tensile tests on flat tensile speciems.
W pracy zaproponowano model krzywych płynięcia stali z efektem TWIP i TRIP, wykorzystujący ideę reprezentatywnego elementu objętości (ang. representative volume element -RVE). Strukturę polikryształu wygenerowano poprzez dyskretyzacją przestrzeni z zastosowanie wieloboków Voronoi. Do opisu umocnienia materiału wykorzystano model wykorzystujący ewolucję populacji dyslokacji, bliźniakowanie oraz gęstość martenzytu epsilon. Odkształcenie plastyczne analizowano numerycznie stosując okresowe warunki brzegowe w RVE. Oprócz uwzględnienia wpływu temperatury i prędkości odkształcenia rozważono też wpływ nierównomierności składu chemicznego. Weryfikację doświadczalną modelu przeprowadzono dla próby jednoosiowego rozciągania próbek płaskich.
Wydawca
Rocznik
Strony
130--136
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • IEHK RWTH Aachen, Intzestrasse 1, 52071 Aachen
autor
  • IEHK RWTH Aachen, Intzestrasse 1, 52071 Aachen
Bibliografia
  • Allain, S., Chateau, J., Bouaziz, O., 2004a, A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 387, 143-147.
  • Allain, S., Chateau, J.P., Bouaziz, O., Migot, S., Guelton, N., 2004b, Correlations between the calculated stacking fault energy and the plasticity mechanisms in FeMnC alloys, Materials Science and Engineering: A, 387-389, 158-162.
  • Allain, S., Chateau, J.P., Dahmoun, D., Bouaziz, O., 2004c, Modeling of mechanical twinning in a high manganese content austenitic steel, Materials Science and Engineering: A, 387-389, 272-276.
  • Bouaziz, O., Allain, S., Scott, C, 2008, Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels, Scripta Materiali, 58, 484-487.
  • Bouquerel, J., Verbeken, K., DeCooman, B., 2006, Microstructurebased model for the static mechanical behaviour of multiphase steels, Acta Materialia, 54, 1443-1456.
  • Choi, H.C., Ha, T.K., Shin, H.C., Chang, Y.W., 1999, The formation kinetics of deformation twin and deformation induced epsilonmartensite in an austenitic fe-c-mn steel, Scripta Materialia, 40, 1171-1177.
  • Dumay, A., Chateau, J.P., Allain, S., Migot, S., Bouaziz, O., 2008, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe-Mn-c steel, Materials Science and Engineering: A, 483-484, 184-187.
  • Frommeycr, G., Br'ux, U., Neumann, P., 2003, Supra-ductile and high strength manganese-trip and twip steels for high energy absorption purposes, 1S1J International, 43, 438-446.
  • Geuzaine, C, Remacle, J.F., 2009, Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, 79, 1309-1331.
  • Gutierrez-Urrutia, I., Zaefferer, S., Raabe, D., 2010, The effect of grain size and grain orientation on deformation twinning in a Fe-22 wt.% Mn-0.6 wt.% C TWIP steel, Mate­rials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 527, 3552-3560.
  • Jiang, B., Sun, L., Li, R., Hsu, T., 1995, Influence of austenite grain size on y-e martensitic transformation temperature in Fe-Mn-Si-Cr alloys, Scripta Metallurgica et Materialia, 33, 63-68.
  • Jin, J.E., Lee, Y.K., 2009, Strain hardening behavior of a Fel8Mn0.6Cl.5Al TWIP steel, Materials Science and Engineering: A, 527, 157-161.
  • Kassem, G.A., 2009, Micromechanical Material Models for Polymer Composites Through Advanced Numerical Simulation Techniques, Ph.D. thesis, RWTH Aachen.
  • Kocks, U., Mecking, H., 2003, Physics and phenomenology of strain hardening: the fee case, Progress in Materials Science, 48, 171-273.
  • Lee, Y.K., Choi, C, 2000, Driving force for e-martensitic transformation and stacking fault energy of in Fe-Mn binary system, Metallurgical and Materials Transactions 4, 31, 355-360.
  • Melchior, M., 2009, Modelling of texture and hardening of TWIP steel, Ph.D. thesis, Université catholique de Louvain.
  • Olson, G.B., Cohen, M., 1974, Kinetics of strain-induced mar¬tensitic nucleation, Metallurgical and Materials Transactions A, 6 A, 791-795.
  • Rycroft, CH., 2009, Voro++: A three-dimensional voronoi cell library in c++, Chaos: An Interdisciplinary Journal of Nonlinear Science, 19.
  • Saeed-Akbari, A., Imlau, J., Prahl, U., Bleck, W., 2009, Deriva¬tion and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels, Metallurgical and Materials Transactions A, 40A, 3076-3090.
  • Saeed-Akbari, A., Mosecker, L., Schwedt, A., Bleck,W., 2011, Characterization and prediction of flow behavior in high-manganese twinning induced plasticity steels: Part 1. mechanism maps and work-hardening behavior, Metallurgical and Materials Transactions A, 43A, 1688-1704.
  • Saeed-Akbari, A., Schwedt, A., Bleck, W., 2012, Low stacking fault energy steels in the context of manganese-rich iron-based alloys, Scripta Materialia, 66 (12), 1024-1029.
  • Yang, H.S., Bhadeshia, H., 2009, Austenite grain size and the martensite-start temperature, Scripta Materialia, 60, 493-495.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd27aecf-fa70-4034-9017-9f6ae9788fce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.