
Zeszyty Naukowe 38(110) 15 

Scientific Journals  Zeszyty Naukowe 
Maritime University of Szczecin Akademia Morska w Szczecinie 

2014, 38(110) pp. 15–19 2014, 38(110) s. 15–19 
ISSN 1733-8670 

The directional error curve as booth elliptical lemniscate 

Andrzej Banachowicz1, Adam Wolski2 
1
 West Pomeranian University of Technology, Department of Artificial Intelligence and Applied Mathematics 

  71-210 Szczecin, ul. Żołnierska 49, e-mail: abanachowicz@wi.zut.edu.pl 
2
 Maritime University of Szczecin, Departament of Marine Navigation 

  71-500 Szczecin, ul. Wały Chrobrego 1–2, e-mail: a.wolski@am.szczecin.pl 

Key words: navigation, navigational mathematics, navigational accuracy 

Abstract 
There are two aspects of position coordinates accuracy in navigation: global accuracy and local accuracy – 

relative to navigational dangers. The latter case refers to the assessment of position (distance) accuracy in re-

spect to the nearest navigational danger, a hazard to navigation. The directional error is a relevant measure for 

such assessment. The directional error curve is analyzed in this article as a particular case of the Booth ellipti-

cal lemniscate. The curve graph illustrates the confidence interval of point position errors in a given direction 

(about 68%). 
 

 

Introduction 

One essential aspect of navigation and shipping 

safety is the assessment of accuracy and reliability 

of navigational data and other information. Various 

measures of accuracy assessment are used for this 

purpose. Position coordinates are evaluated with 

a few different measures. Some of them have prac-

tical applications due to the ease of plotting or cal-

culating and simple geometrical interpretation. We 

have to bear in mind, however, that such measures 

are more to give an idea than to be exact. For this 

reason we use advanced methods for estimating 

navigational parameters of automated and integrat-

ed navigational systems. Consequently, the appro-

priate assessment of their accuracy is made. On the 

other hand, in systems and equipment for naviga-

tional information / situation display we can use 

and present a variety of accuracy assessment 

measures for position and other navigational pa-

rameters. 

The most common measures of position accura-

cy assessment used in navigational practice are as 

follows: 

 parallelogram of position errors; 

 mean error ellipse; 

 mean directional error; 

 mean position error; 

 probable position error; 

 95% error; 

 maximum error; 

 position covariance matrix; 

 ellipsoid and hyperellipsoid of position errors; 

 geometric coefficients of a position determina-

tion system or parametric navigation. 

Note that a different probability corresponds to 

each of these measures. 

In most cases maritime navigation deals with 

navigational parameters: scalars or two-dimen-

sional vectors. We generally obtain these parame-

ters as direct or indirect measurements of physical 

or geometric quantities. In either case the accuracy 

of ultimate results needs to be assessed. Accuracy 

assessment consists in examining the distributions 

of scalar random variables or two-dimensional ran-

dom vectors.  

In many theoretical considerations, as well as 

practical applications a need arises to evaluate the 

accuracy of linear objects (scalars) based on infor-

mation on the accuracy of individual points. From 

known (measured) random vectors we calculate 

scalar parameters, components of the vectors.  

One such example is the calculation of a distance 

between two points, whose coordinates (two- 

-dimensional or more-dimensional) are defined 
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from measurements. A similar case is, when from 

measured position coordinates we determine a spa-

tial position of linear objects – depth contours, 

wharf or fairway limits, area boundaries, distance to 

a danger etc. In such situations we should use the 

directional error, not the mean circular error [1, 2]. 

These authors analyze the directional error and its 

relations with the Booth’s elliptical lemniscate. 

Two-dimensional normal distribution 

In maritime navigation we often adopt a two-

dimensional space, in which ship’s position coordi-

nates are determined. Therefore, a ship’s position 

can be regarded as a two-dimensional random vec-

tor, whose distribution is determined by its proba-

bility density function. In our case this function has 

the following form [3, 4]: 
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where: 

yx,  – mean values of random variables X, Y; 

x – standard deviation of random variable X; 

y – standard deviation of random variable Y; 

xy – correlation coefficient of random variables 

X and Y. 

In navigational interpretation x is the mean error 

of the coordinate X, that is the directional error 

along the axis X. A similar remark applies to the 

standard deviation of the variable Y. Besides, as we 

bear in mind, the correlation coefficient of random 

variables is defined by this relation: 
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where: xy is a covariance of random variables X, Y. 

Let us note that the value of probability density 

function at its maximum does not change due to the 

translation (shift), or rotation of the coordinate sys-

tem, which can be formulated as follows. 

Conclusion 1. 

The probability density function value for a two-

dimensional random vector in the maximum is an 

invariant of shifts and rotations. 

For a given probability distribution, the quanti-

ties x, x, xy and yx,  are constants. The function 

(1) reaches a maximum when: 

 yyxx  ,  (3) 

After the substitution of conditions (3) into the rela-

tion (1) we obtain: 

 e
0
 = 1. 

Hence at the maximum, the value of probability 

density function will be: 
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After incorporating the correlation coefficient 

(2) and doing some transformations, we bring the 

term 21 xyyx    from the denominator of equa-

tion (4) to this formula:  

 22221 xyyxxyyx    (5) 

As mentioned before, according to Conclusion 1, 

the equation below holds: 

    maxmax ,, yxfyxf   (6) 

where x', y' are new coordinates after a rotation or 

translation of the coordinate system, also the fol-

lowing equation will hold: 

 222222
yxyxxyyx     (7) 

The matrix of two-dimensional covariance of prob-

ability density function (1) has this form: 
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The left-hand and right-hand side of equation (7) 

represent the determinant of that matrix, from 

which another conclusion is implied. 

Conclusion 2. 

The determinant of the covariance matrix of 

a two-dimensional random vector is an invariant of 

rotations and translations.  

Let us take a probability density function for 

a random vector, whose mean vector is a zero vec-

tor. This will simplify algebraic transformations 

and maintain the general nature of considerations. 

It simply means a shift of the coordinate system by 

a vector [ yx, ]. 

In this case, we will obtain the following form 

of the probability density function: 
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In our further analysis we will utilize the follow-

ing theorem [4, 5, 6]. 
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Theorem 

If n-dimensional random vector x has a multi-

dimensional normal distribution with expected val-

ues vector x  and covariance matrix P of n order, 

then for any real m  n of matrix A of the m  n 

order, the random vector y = Ax has a multidimen-

sional normal distribution with an expected value 

E(y) = A x  and covariance matrix APA
T
. 

Conclusion 3. 

In particular for m = 1 the random variable w
T
x 

has a normal distribution with expected value w
T
x  

and variance w
T
Pw. 

We can use the above theorem for determining 

the random variable distribution after a change of 

the coordinate system. Then [7] matrix A will be 

a Jacobian matrix for the transformation of the old 

coordinate system into the new one. This theorem  

is also a generalization of the law of mean error 

propagation [8]. 

Matrix A can be a matrix of rotations – a change 

of coordinates due to a rotation of the system.  

We can calculate directional errors from the newly 

obtained covariance matrix, and for this purpose the 

conclusion drawn from the theorem can be used.  

In this case vector w will be a directional vector. 

Let us now rotate the coordinate system by an 

angle . The old coordinates will be expressed by 

the new ones and the rotation angle in this formula: 
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It is known that rotation affects only the values 

of variables x, y. It does not affect the determinant 

of covariance matrix (conclusion 2), so it does not 

affect the denominator of the equation (4), either. 

Therefore, we can consider only the function expo-

nent (8). Let us do subsequent transformations, 

taking into account relation (2). We get: 
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  (10) 

On the right-hand side of equation (10) is the co-

variance matrix determinant detP that can be  

factored out. Then we obtain a simplified form on 

the right (10):  

  2222 2
det2

1
yxyx xxyy  

P
 (11) 

Now we can exchange the variables (rotation of the 

coordinate system by an angle ). To do this, we 

put formulas (9) into (11). After transformations the 

final form of expression (11) in the new coordinate 

system will be: 
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Let us write this expression somewhat differently, 

so that after sorting out particular terms we get: 
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According to formula (7) this equation also holds: 

 222det yxyx   P  

After taking into consideration the form of expres-

sion (11) and comparison with appropriate terms of 

expression (12), we come to a situation, where the 

variances and covariance, after a rotation of the 

coordinate system, will be written as: 

  22222 sin2sincos yxyxx   (13) 

  22222 cos2sinsin yxyxy   (14) 

    2cos2sin
2

1 22
xyyxyx   (15) 

If in the above formulas we express the covariance 

by the correlation coefficient and standard devia-

tions (relation (2)), then they will appear in another 

form: 

 22222 sin2sincos yyxxyxx   (16) 

 22222 cos2sinsin yyxxyxy   (17) 

    2cos2sin
2

1 22
yxxyyxyx  (18) 

Formulas (13)–(15) or (16)–(18) describe the 

variances and the covariance of the normal distribu-

tion after the coordinate system rotation.  

Directional error 

Standard deviations (mean errors) are deter-

mined as an arithmetic root of the random variable 
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variance. Hence the roots of variances (16) and (17) 

are directional errors along the new coordinate axes 

X', Y'. Then, the formula defining the directional 

error (in the direction indicated by an angle, axis X') 

is as follows: 

 
22222 sin2sincos yyxxyx  (19) 

or 

 
22222 sin2sincos yxyx   (20) 

The probability corresponding to the directional 

error is equal to the probability of mean error. The 

geometrical interpretation of directional error is 

shown below (Fig. 1). 

 

Fig. 1. Comparison of mean error ellipse, mean directional 

error and directional error (a – confidence ellipse, b – direc-

tional error, c – distance root mean square) 

In the particular case, when mean errors of co-

ordinates are equal to semi-axes of the mean error 

ellipse, i.e. 

 yx ba   and  

the covariance equals zero, that is xy = 0 (conse-

quently, also the correlation coefficient will equal 

zero). We will then get the following form of dis-

tribution variance (1) after a rotation by angle , 

the variance being expressed as a function of mean 

error ellipse parameters: 

  22222 sincos bax   (21) 

  22222 cossin bay   (22) 

The directional error, in turn, will be expressed by 

this relation: 

 
22222 sincos ba   (23) 

It is the same relation as the one stated in [1, 9].  

Let us take a look at the relation between the 

mean position error and the directional error. We 

know that the mean position error M is expressed 

by the equivalent formulas [5]: 

 22
yxtrPM    (24) 

 
22 baM   (25) 

A comparison of formulas (23) and (25) implies 

that the directional error is always smaller than the 

mean position error: 

 M  

This means that it is incorrect to use mean position 

errors instead of directional errors in accuracy anal-

ysis of linear objects. Unfortunately, it often hap-

pens in theoretical analyses as well as in practice. 

The reason is sometimes that during a series of GPS 

(or DGPS) measurements covariance in not com-

puted, and so the directional error or parameters of 

the mean error ellipse cannot be determined. 

Let us check how a rotation of the coordinate 

system changes the value of mean position error. 

To this end, let us sum up variances (16) and (17), 

and we obtain: 
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The above equation leads to the following con-

clusion. 

Conclusion 4. 

The mean position error M (trace of covariance 

matrix P) is an invariant of shifts and rotations. 

We would arrive at the same conclusion by  

adding variances (21) and (22). 

Booth lemniscates 

Now, we will demonstrate that the directional  

error is a Booth elliptical lemniscate. The name of 

the curve is derived from the fact it is the pedal 

curve of the ellipse relative to its centre. Its general 

form is described by the implicit equation [10]: 

   02222222  ybxayx  (26) 

Let us consider polar coordinates. We substitute: 

  sinandcos ryrx   
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into equation (26): 
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that is: 

  2222224 sincos rbrar  . 

After dividing both sides by r
2
, we obtain: 

  22222 sincos bar   (27) 

The directional error  is a distance of its curve 

to the origin of coordinate system, that is radius r. 

Therefore, we have obtained an equivalent relation 

(23). It proves that the directional error curve is 

a Booth elliptical lemniscate and thus, is character-

ized by the same properties [10]. 

Conclusions 

The above stated relations determining the di-

rectional error are general and can be used regard-

less of the orientation of the mean error ellipse. 

This allows us to skip one stage of calculations – 

those of parameters of the mean error ellipse based 

on elements of the position covariance matrix [5] or 

analytical-graphical methods. It is essential in 

a situation where we obtain positions by various 

position determination systems or when parameters 

of the mean error ellipse are time- and space-

varying (satellite navigational systems). We can 

also see that the curve of directional errors is of 

a more general geometric character as a Booth  

elliptical lemniscate. That is why properties of that 

pedal curve result directly from geometric analysis 

and depend on the related ellipse. 

From the analysis herein conducted, we can 

state that invariants of shifts and rotations are: 

 maximum of the probability density function of 

a two-dimensional random vector; 

 determinant of the covariance matrix of a two- 

-dimensional random vector; 

 mean position error (trace of the covariance 

matrix). 

In practical terms it means that locally we can 

make transformations of linear coordinate systems 

to a form most convenient for accuracy analysis of 

geometrical parameters of our concern. 
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