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ABSTRACT

Purpose: The flow velocity and pressure of fluid flowing through a pipeline can cause 
the vibration of pipes, and consequently result in the modification in natural frequency 
via fluid-structure interaction.  The value of the natural frequency of a component when 
approaches the excitation force to a certain degree, a severe resonance failure may occur. 
Hence, avoiding the resonance failure of a pipe subjected to complex conditions is an 
essential issue that requires to be solved urgently in the engineering field. This work treats 
the transverse vibration for flexible inclined heated pipe, made of polypropylene random-
copolymer (PP-R), conveying fluid assuming pinned connections at the ends. The pipe was 
placed at different support angles and subjected to variant temperatures.
Design/methodology/approach: The inclined pipe is modelled as Euler-Bernoulli beam 
taking into account its self-weight, temperature variation, inclination angle, aspect ratio, 
and internal fluid velocity. The integral transforms method, which includes the finite Fourier 
sine and the Laplace transforms, was used to develop an analytic solution to the modified 
equation of motion and the analytical expressions for dual natural frequencies of the pipe-
fluid interaction system were computed.
Findings: The proposed solution technique via finite Fourier sine and Laplace transforms 
offers a more convenient alternative to calculate the dynamic characteristic of pipes 
conveying fluid. The obtained results showed that the dynamical behaviour of pipe–fluid 
system is strongly affected by fluid flow velocity, degree of inclination, temperature variation, 
and aspect ratio of the pipe in transverse modes.
Research limitations/implications: This work focuses on fundamental (first) mode in 
the most discussions.
Practical implications: It was revealed that the thermal effects in the pipe are a very 
important factor and more significant in comparison with the internal fluid velocity and the 
inclination angle has a larger impact on vibration characteristics at a higher aspect ratio. The 
findings can be useful for the design of engineering components.
Originality/value: Determining the combining effect of inclination angle, aspect ratio, and 
thermal loading on vibration characteristic of the pipes conveying fluid by using an improved 
analytic solution to the modified equation of motion via mixed of finite Fourier sine and 
Laplace transforms.

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
https://doi.org/10.5604/01.3001.0015.2453
mailto:21955%40student.uotechnology.edu.iq?subject=
https://orcid.org/0000-0003-2402-9556


Research paper16

Journal of Achievements in Materials and Manufacturing Engineering

J.H. Mohmmed, M.A. Tawfik, Q.A. Atiyah

Keywords: Finite Fourier sine transforms, Laplace transforms, Natural frequency, Inclined 
pipe conveying fluid
Reference to this paper should be given in the following way: 
J.H. Mohmmed, M.A. Tawfik, Q.A. Atiyah, Natural frequency and critical velocities of heated 
inclined pinned PP-R pipe conveying fluid, Journal of Achievements in Materials and 
Manufacturing Engineering 107/1 (2021) 15-27. 
DOI: https://doi.org/10.5604/01.3001.0015.2453

ANALYSIS AND MODELLING

  
 

 
 

 
 
 
 
 
 
 
 
 
 
1. Introduction  
 

The dynamical behaviour of pipelines has attracted a lot 
of attention from many investigators due to their numerous 
applications in many engineering fields, particularly, in oil 
and gas installations, chemical plants, hydropower plants, 
reactors, cooling systems, medical equipment, and ocean 
mining [1,2]. 

Pipes conveying fluid are the simplest dynamical system 
of fluid-structure interaction problems, that comprises of 
two main sections, i.e., the external pipe and the fluid 
flowing through it [3]. This dynamical system not only 
exhibits very important and interesting dynamical 
behaviours, but also services big radiant meanings to other 
close disciplines [4]. Therefore, researches in this field have 
been extensively performed since the middle of the last 
century. 

The first attempt to analyse the dynamical behaviour of 
pipe conveying fluid was by Ashley and Haviland. They 
analysed the characteristic of vibration in the Tran-Arabian 
pipeline [5]. Thereafter, the dynamic behaviour of pipes has 
been increasingly investigated by many other researchers, 
like, Benjamin [6], he was the first researcher who discovers 
that fluid friction has no effect on dynamical behaviour. 
Gregory and Paidoussis [7] analysed this dynamical system 
further, specifying that for a certain high flow speed, the pipe 
may be undergoing flexural oscillatory instability. Then, in 
the subsequent forty years, several articles on the plain pipe 
and its variants were published, the linear and the nonlinear 
dynamic behaviour of various support systems have been 
widely analysed. H.R. Oz [8] analysed the stability and non-
linear vibrations of tensioned pipe conveying fluid with 
variable velocity. J. L. Hill and C. P. Swanson [9] studied 
the stability conditions of fluid conveying tubes and the 
influences of adding lumped masses on the dynamical 
system. Qiao Ni et. al [10] investigate the vibration 
characteristics and stability of pipe-fluid systems immersed 
in a fluid with axially moving supports. The influence of 
flexible (torsional spring) end conditions on the dynamics of 
pipe conveying fluid utilizing the Rayleigh model was 
studied by B.Y. Dagli and A. Ergut [11]. They found that the 

behaviour of the Rayleigh model becomes similar to that of 
the Euler-Bernoulli model at the slenderness ratio values 
above 100. D.B. Giacobbi, et. al [12] show that the system 
becomes more stable with increasing the density of fluid 
along the pipe, on their study about the dynamics of 
cantilevered and clamped end pipes conveying fluid with 
axially variable density. On the other hand, many 
researchers focused on the identification and control of pipe 
vibration to avoid the hazards [13-15]. However, in most of 
the previous work, due to the complexity of the 
mathematical models, the approximate and numerical 
methods were utilized to treat the problems of the dynamics 
of fluid-conveyed pipes. Researchers in Refs. [16-18], 
adopted the transfer matrix technique to obtain the solution 
of the governing equation of motion for various end 
conditions of pipe conveying fluid; T.A. El-Sayed and H.H. 
El-Mongy [19] use variational iteration methods combined 
with transfer matrix method; Jweeg and Ntayeesh [20] 
analyse the gyroscopic system for a nonlinear pipe 
conveying fluid by using multiple scales method; S. 
Chandurkar and R. Kadoli [21] use a numerical method 
(finite element and differential quadrature approach) to 
solve the governing equation for the pipe conveying fluid. 
Part of the interest in current work rests on presenting an 
exact closed-form solution via integral transform techniques 
to finding the natural frequencies and critical velocity of 
fluid-conveying pipes.  

Recently, the prosperity in the world economy has led to 
significant development in the pipe industry, and the need 
for large piping systems has considerably grown. In the huge 
systems, the pipelines cannot all be placed vertically or 
horizontally, and are inevitably erected at an inclined angle 
for different reasons like space, material, and power supply. 
On the other hand, these pipes often are exposed to 
fluctuations in the internal or external temperatures while 
cyclic operational start-up and shutdown procedures cause a 
vibration of these pipes and propagate internal waves. 
Moreover, the modern petroleum industries focus on 
extracting oil and gas from the oceans and deep waters, 
many pipes, especially that carrying the petroleum or gas 
from the sea bed to the surface may have various aspect 
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ratios of length to diameter. Therefore, the study of the effect 
of the inclination angle, aspect ratio in combination with 
temperature variations on natural frequencies, and critical 
fluid velocity of the pipeline system are imperative. A 
practical investigation on the vibration of horizontal pipe 
conveying fluid with various temperatures was conducted by 
Ameen et al. [22]. The influences of the gravity parameters 
on the stability conditions of the linear standing and hanging 
pipe systems were analysed by Paidoussis [23]. Wang and 
Q. Ni [24] investigated the stability of a standing pipe 
conveying fluid with elastic support and compared the 
results with that of a hanging system. However, most of 
these studies have not focus on the influence of the 
temperature variation, aspect ratio, and inclined pipeline 
systems on the natural frequencies and critical fluid velocity 
and did not take into consideration angle support, and 
thermal influences in the formulation of the governing 
equations, which makes the present study on this topic 
essential. Hence, in order to compensate and address the lack 
of ongoing research as mentioned above, the current work 
took into account the inclined pipes and the factors affecting 
them. 

An analytic solution, by using integral transform 
technique, for 4th order governing equation was offered in 
this study. Moreover, the influence of the supported angle, 
aspect ratio, and thermal variation under various flow 
velocities on the natural frequencies and critical fluid 
velocity of a pinned-pinned, inclined PP-R pipe conveying 
fluid. The obtained results are compared with previous 
works in the literature.  

The current paper is structured as follows. Section 1 the 
problem under study was introduced. In Section 2, the 
analysis of the inclined pipe containing an incompressible 
flowing fluid were presented and the governing partial 
differential equation of motion with appropriate assumptions 
was derived. In Section 3, an analytic solution by using the 
mixed finite Fourier sine and Laplace transform technique to 
solve the time-space domain governing equation was 
developed and the natural frequencies of the system are 
computed. In Section 4, results are analysed and discussed 
in addition to validating the adopted analytic solution against 
other approximate and numerical approaches. Finally, 
Section 5 presents conclusions of the study. 
 
 
2. System model and governing 
equation of motion 
 

The considered system illustrated in Figure 1 comprises 
of simply, inclined, uniform pipe of length L, cross-sectional 

area Ap, mass per unit length mp, and bending stiffness EI, 
containing an incompressible flowing fluid of mass per unit 
length mf, and mean flow velocity υ. The cross-sectional 
flow area is A and the fluid pressure is p. It is subjected to 
the planar motion x (y, t). The axis of the pipe in its 
unreformed state coincides with the x-axis, which has an 
inclination angle θ with the horizontal axis. 

 

 
 

Fig. 1 Schematic of pipe with simply support 
 

The basic assumptions made for the pipe and the fluid in 
the derivation of this model are as follows: 
 a fully developed incompressible, non-viscous, 

Newtonian, fluid is flowing inside the pipe. 
 The flow through the pipe is uniform across the pipe and 

its mean velocity along the pipe is constant. 
 The pipe wall behaves elastically, i.e. the material 

damping is negligible. 
 The material of the pipe is assumed to be isotropic and 

the (young modulus E, thermal conductivity k, thermal 
expansion coefficient α, …. etc.) are dependent on 
temperature. 

 The ratio of the span, L, of the pipe to its outside 
diameter, Do, (aspect ratio) is equal to or higher than 20, 
and the wavelength of its transverse deflection is large as 
compared to the outside diameter of the pipe, thus theory 
of Euler–Bernoulli theory is applicable for the 
representation of the transverse vibration of the pipe.  

 The radial variation and the secondary effects were 
considered to be very small so that the plug-flow model 
is acceptable. 

 The effect of the vibrated pipe on the velocity of flowing 
fluid inside it is small and can be ignored, i.e. it is 
assumed that the study is applied to the inside wall of the 
pipe so fluid velocity at these points is zero.  

 No variation in the cross-section dimensions of the pipe 
during vibration is accounted for. 

 The friction between the flowing fluid and the pipe is 
negligible . 
Moreover, in this work, the tension force is considered 

to be sufficiently large in comparison to the effects arising 
from elongation. Also, it’s assumed that the extensional 
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stiffness is sufficiently large so that the axial deformation 
causing by the pretension is negligible. 

With the assumptions listed above, the model derived by 
Paidoussis and Li [25] is modified to accommodate the 
influences of temperature and support angle. For this case, 
infinitesimal elements for the fluid and pipe, as shown in 
Figure 2, were considered. 
 

 
 

 
 

Fig. 2. Fluid and pipe elements 
 

For the fluid element of Figure 2a, force balance in the 
x- and y-directions yields; 

 
�� ��

�� � 𝑚𝑚�𝑔𝑔 sin𝜃𝜃 � �� � � ��
�� � 0 (1) 

�� � � �
�� ��

��
��� � �� ��

�� � 𝑚𝑚�𝑔𝑔 cos𝜃𝜃 𝑎𝑎� � 𝑚𝑚� � ��� �
𝜐𝜐 �
���

� 𝑦𝑦    (2) 
 
where q represents the internal shear stress, S is the internal 
perimeter (internal section circumference) of pipe, g is the 
acceleration of gravity, and F represents the transverse force 
between the pipe wall and fluid (per unit length). 

In a similar way, force balance on the pipe element 
shown in Figure 2b yield; 

 
��
�� � 𝑚𝑚�𝑔𝑔 sin𝜃𝜃 � � ��

�� � �� � 0 (3) 
 

� � �� ��
�� �

��
�� �

�
�� �𝑇𝑇

��
��� �

�
�� ��

��
��� � 𝑚𝑚�𝑔𝑔 cos 𝜃𝜃 �

𝑚𝑚�
���
���    (4) 
 

where T represents the longitudinal tension. Q represents the 
transverse shear force in the pipe. The transverse shear force 
Q in the pipe is related to the bending moment M as follows; 
 
� � ��

��     𝑎𝑎𝑎𝑎𝑎𝑎   � � �𝐸𝐸𝐸𝐸 ������   ,    � � � �𝐸𝐸𝐸𝐸 ������  
 

N is the thermal force in the pipe and can be calculated 
as: 

� � 𝛼𝛼𝐸𝐸��∆𝑇𝑇, Where  𝛼𝛼:  thermal expansion coefficient 
(1/ oC), L: the length of the pipe (m). ∆𝑇𝑇 � �𝑇𝑇���� � 𝑇𝑇�: the 
temperature change (oC). 𝑇𝑇�: initial temperature of the pipe 
(oC). �𝑇𝑇����: instantaneous temperature of the pipe after the 
time (oC). 

Assuming P, T and N are invariant along x and 
combining Eqs. (2) and (4) one obtains; 

 
𝐸𝐸𝐸𝐸 ������ �

�
�� ��𝑇𝑇 � ��� ����� �

�
�� ��

��
��� � �𝑚𝑚� �

𝑚𝑚��𝑔𝑔 cos 𝜃𝜃 � 𝑚𝑚�
���
��� � 𝑚𝑚�

���
��� � 2𝑚𝑚�𝜐𝜐 ���

���� �
 𝑚𝑚�𝜐𝜐� �

��
��� � 0  (5) 

 
By substituting equations. (1and 3), it can obtain the 
following equation: 
 
�
�� �𝑇𝑇 � ��� � ��𝑚𝑚� � 𝑚𝑚��𝑔𝑔 sin 𝜃𝜃 (6) 
 
where T is axial force on the pipe. 

 

Integrating of Eq.(6) gives; 
 

�𝑇𝑇 � ���|� � �𝑇𝑇 � ���|� � ��𝑚𝑚� �𝑚𝑚���� � ��𝑔𝑔 sin 𝜃𝜃  
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It can be noted that both T and P equal to zero at x = L, 
the first because there are no restrict at supports, and the 
latter because it is measured above the atmospheric pressure; 
hence this equation produces; 

 
� � �� � �𝑚𝑚� �𝑚𝑚���𝜐𝜐 � ��𝑔𝑔 sin 𝜃𝜃 
 

Adding these values into Eq. 5 yields the following 
equation of motion of a pipe conveying fluid; 
 
𝐸𝐸𝐸𝐸 ������ � �𝑚𝑚� �𝑚𝑚���𝜐𝜐 � ��𝑔𝑔 sin𝜃𝜃 ���

��� � 𝑚𝑚�𝜐𝜐� �
��

��� �
𝑁𝑁 ���

��� � �𝑚𝑚� � 𝑚𝑚��𝑔𝑔 sin𝜃𝜃 ��
�� � �𝑚𝑚� � 𝑚𝑚��𝑔𝑔 cos 𝜃𝜃 �

2𝑚𝑚�𝜐𝜐 ���
���� � �𝑚𝑚� �𝑚𝑚�� �

��
��� � 0  (7) 

 
The components of Eq. 7 are defined as follows: the first 

term is the acceleration due to the restoring force, the second 
is the accelerations due to the gravity force, the third is the 
accelerations due to the centrifugal force caused by the 
internal flow within the pipe, after that the fourth term 
represent the accelerations due to the thermal force caused 
by the change in temperature within the pipe then the fifth 
and sixth terms represent the static force due to the gravity 
effect and the seventh term stands for acceleration due to the 
Coriolis forces; and following this are accelerations due to 
the system’s inertia force. The second, third, and fourth 
terms represent the curvature term of the pipe. Rearrange  
eq. 7, gives 

 
𝐸𝐸𝐸𝐸 ������ � ��𝑚𝑚� � 𝑚𝑚���𝜐𝜐 � ��𝑔𝑔 sin𝜃𝜃 � 𝑁𝑁 �𝑚𝑚�𝜐𝜐�� �

��
��� �

�𝑚𝑚� � 𝑚𝑚��𝑔𝑔 sin 𝜃𝜃 ��
�� � �𝑚𝑚� �𝑚𝑚��𝑔𝑔 cos𝜃𝜃 � 2𝑚𝑚�𝜐𝜐 ���

���� �
�𝑚𝑚� � 𝑚𝑚�� �

��
��� � 0 (8) 

 
It is convenient to rewrite Eq. 8 in the following 

dimensionless form; 
 
���
��� � ��1 � 𝜉𝜉�𝑔𝑔 sin𝜃𝜃 � 𝑁𝑁 � 𝑈𝑈�� ������ � 𝑔𝑔 sin𝜃𝜃 ��

�� �
𝑔𝑔 cos 𝜃𝜃 � ���

��� � 2𝛽𝛽�
� 𝑈𝑈 ���

���� � 0  (9) 
 
where; 
 

𝜂𝜂 � �
�   𝜉𝜉 � �

� ,𝛽𝛽 � ��
�����

,𝑔𝑔 � ����������
�� ,     

𝑈𝑈 � ���
�� �

�
� 𝜐𝜐𝜐𝜐,   𝜏𝜏 � �

�� �
��

�����
�
�
�  , 𝑁𝑁 � ���

��   

 
or in another form 

𝜂𝜂���� � ��1 � 𝜉𝜉�𝑔𝑔 sin𝜃𝜃 � 𝑁𝑁 � 𝑈𝑈��𝜂𝜂�� � 𝑔𝑔 sin 𝜃𝜃 𝜂𝜂� �
2𝛽𝛽�

� 𝑈𝑈𝜂𝜂� � � 𝜂𝜂�  � �𝑔𝑔 cos 𝜃𝜃 (10) 
 
 
3. Analytic solution by mixed Fourier-
Laplace transforms technique 
 

In this part, an analytic solution for Eq. 10 via finite 
Fourier sine and Laplace transforms techniques will be 
presented. to simplify the solution of the fourth order partial 
differential equation, Eq. 10 can be discretized and 
transformed to ordinary differential equations by utilizing 
the separation of variables method, the term η(ξ,τ) is 
decomposed into space and time as follows 

 
𝜂𝜂�𝜉𝜉, 𝜏𝜏� � 𝑌𝑌�𝜉𝜉�𝑞𝑞�𝜏𝜏� (11) 
 
where q(τ) the generalized coordinate of the system and Y(ξ) 
represents a trial/comparison function that will satisfy both 
the geometric and natural boundary conditions. On 
substituting Eq. 11 into Eq. 10, it can be obtained 
 
𝑌𝑌�����𝜉𝜉�𝑞𝑞�𝜏𝜏� � ��1 � 𝜉𝜉�𝑔𝑔 sin𝜃𝜃 � 𝑁𝑁 � 𝑈𝑈��𝑌𝑌���𝜉𝜉�𝑞𝑞�𝜏𝜏� �
𝑔𝑔 sin 𝜃𝜃 𝑌𝑌��𝜉𝜉�𝑞𝑞 � 2𝛽𝛽�

� 𝑈𝑈𝑌𝑌��𝜉𝜉�𝑞𝑞� �𝜏𝜏� � 𝑌𝑌�𝜉𝜉�𝑞𝑞� �𝜏𝜏� � 0 (12) 
 

Suppressing the time dependency of the Eq. (12), by 
applying the Laplace transform 

 
𝑌𝑌�����𝜉𝜉�𝑞𝑞�𝑠𝑠� � ��1 � 𝜉𝜉�𝑔𝑔 sin𝜃𝜃 � 𝑁𝑁 � 𝑈𝑈��𝑌𝑌���𝜉𝜉�𝑞𝑞�𝑠𝑠� �
𝑔𝑔 sin 𝜃𝜃 𝑌𝑌��𝜉𝜉�𝑞𝑞�𝑠𝑠� � �

� cos 𝜃𝜃 � 2𝛽𝛽�
� 𝑈𝑈𝑌𝑌��𝜉𝜉�𝑠𝑠𝑞𝑞�𝑠𝑠� �

𝑌𝑌�𝜉𝜉�𝑠𝑠�𝑞𝑞�𝑠𝑠� � 0 (13) 
 
where q(0), and q ̇(0) were assumed equal to zero. Now, 
consider the finite Fourier sine transform 
 
𝐹𝐹��𝜂𝜂�𝜉𝜉, 𝜏𝜏�� � � 𝜂𝜂�𝜉𝜉, 𝜏𝜏��

� sin𝑛𝑛�𝜉𝜉�𝜉𝜉 � 𝜂𝜂�𝑛𝑛, 𝜏𝜏�;
𝐹𝐹����𝜂𝜂�𝑛𝑛, 𝜏𝜏�� � 2∑ 𝜂𝜂�𝑛𝑛, 𝜏𝜏����� sin𝑛𝑛�𝜉𝜉 � 𝜂𝜂�𝜉𝜉, 𝜏𝜏�𝑛𝑛 𝑎𝑎𝑛𝑛 𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖� (14) 

 
where 𝐹𝐹𝑠𝑠 is the Fourier transform and 𝐹𝐹���is the inverse 
Fourier transform.  

In this case  
 

𝐹𝐹��𝜉𝜉, 𝜏𝜏� � �
0            𝑤𝑤𝑤𝑖𝑖𝑛𝑛    �� � 𝜉𝜉 � 0
𝜂𝜂�𝜉𝜉, 𝜏𝜏�  𝑤𝑤𝑤𝑖𝑖𝑛𝑛            0 � 𝜉𝜉 � 1
0           𝑤𝑤𝑤𝑖𝑖𝑛𝑛          0 � 𝜉𝜉 � �

  

 
By applying the finite Fourier sine transform Eq. 13 

becomes 

3.  Analytic solution by mixed Fourier- 
Laplace transforms technique
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� �𝜃𝜃�����𝜉𝜉�𝑞𝑞�𝑠𝑠� � �𝑔𝑔 sin𝜃𝜃 � � � 𝑈𝑈��𝜃𝜃���𝜉𝜉�𝑞𝑞�𝑠𝑠� ��
�
𝑔𝑔 sin 𝜃𝜃 𝜉𝜉𝜃𝜃���𝜉𝜉�𝑞𝑞�𝑠𝑠� � 𝑔𝑔 sin𝜃𝜃 𝜃𝜃��𝜉𝜉�𝑞𝑞�𝑠𝑠� � �

� cos 𝜃𝜃 �
2𝛽𝛽�

� 𝑈𝑈𝜃𝜃��𝜉𝜉�𝑠𝑠𝑞𝑞�𝑠𝑠� � 𝜃𝜃�𝜉𝜉�𝑠𝑠�𝑞𝑞�𝑠𝑠�� sin 𝑠𝑠�𝜉𝜉𝑎𝑎𝜉𝜉 � 0 (15) 
 
Y(ξ) is varying according to boundary condition, in the 
following, the solution of motion governing equation for 
simply support case. By assuming Y(ξ)=φr (ξ), where the 
functions φr (ξ) are the beam Eigenfunctions, which are 
given as: 
 

𝜃𝜃�𝜉𝜉� � √2 𝑠𝑠𝑠𝑠𝑠𝑠�𝜆𝜆�𝜉𝜉�, √2 𝑠𝑠𝑠𝑠𝑠𝑠�𝜆𝜆�𝐿𝐿� � 0   ⟹ 𝜆𝜆� � ��
�    (16) 

 
The boundary condition for simply support are 
 

𝜃𝜃���𝜉𝜉� � 𝜃𝜃�𝜉𝜉� � 0  𝑎𝑎𝑎𝑎 𝜉𝜉 � 1  𝑎𝑎𝑠𝑠𝑎𝑎  𝜉𝜉 � 0 (17) 
 

The applications of space function in current form as 
given above for simply support may include some 
difficulties and long calculations in finding the integral 
transformation for each term in Eq. 15, alternatively, a 
polynomial function can be applied for this type of support 
system: 

 
𝜃𝜃�𝜉𝜉� � 𝑎𝑎� � 𝑎𝑎�𝜉𝜉 � 𝑎𝑎�𝜉𝜉� � 𝑎𝑎�𝜉𝜉� � 𝑎𝑎�𝜉𝜉� (18) 

 
Applying the boundary conditions in Eq. 18 
 
𝜃𝜃�𝜉𝜉� � �𝜉𝜉� � 2𝜉𝜉� � 𝜉𝜉�𝑎𝑎� (19) 
 

By applying the orthogonal rule, for 𝑎𝑎 � 1, we have 
 𝑎𝑎� � 4.5 for the first mode. 

On performing integration and rearrange Eq. 15 
 

�𝑠𝑠� ��
���� �1 � ��1����� � 𝑠𝑠 �2𝛽𝛽�

� 𝑈𝑈 � �
�� �1 � ��1��� �

��
���� �1 � ��1����� � ��

�� �1 � ��1����� � �� �
𝜐𝜐�� ��

���� �1 � ��1����� � 𝑔𝑔 sin𝜃𝜃 � ��
���� �1 � 2��1��� �

�
�� �1 � ��1��� � ��

���� �1 � ��1��� � ��
���� �1 �

��1������� 𝑞𝑞�𝑠𝑠� � � �
��

�
� cos 𝜃𝜃  1�ℱ�  (20) 

 

Let Ζ�� � 2𝛽𝛽�
� 𝑈𝑈 � �

�� �1 � ��1��� � ��
���� �1 � ��1���� (21a) 

 

Ζ�� � ��
�� �1 � ��1����� � �� � 𝑈𝑈�� ��

���� �1 �
��1����� � 𝑔𝑔 sin 𝜃𝜃 � ��

���� �1 � 2��1��� � �
�� �1 �

��1��� � ��
���� �1 � ��1��� � ��

���� �1 � ��1������ (21b) 

� �𝑠𝑠� ��
���� �1 � ��1����� � Ζ��𝑠𝑠 � Ζ��� 𝑞𝑞�𝑠𝑠� �

� �
��

�
� cos 𝜃𝜃  1�ℱ�  (22) 

 
To make eq. 22 more concise, the following 

representations are used 
 

𝜙𝜙�� � ���
��

���������������
  ,  

 𝜙𝜙�� � ���
��

���������������
   (23a,b) 

�𝑠𝑠� � 𝜙𝜙��𝑠𝑠 � 𝜙𝜙���𝑞𝑞�𝑠𝑠� �
� �
��

�
� ���� ��ℱ�

��
���������������

  

⟹ 𝑞𝑞�𝑠𝑠� �
� �
��

�
� ���� ��ℱ�

��
�����������

����
�������������    

 (24) 
 
By invoking the finite Fourier sine and Laplace 

inversion, the dynamic response can be expressed as 
 

𝜂𝜂�𝜉𝜉, 𝜏𝜏� � 𝜃𝜃�𝜉𝜉� �� ��������� ��
������

 (25) 

 
where,  
 

𝐹𝐹��𝑎𝑎� � � �
������ �

�
��������������� �𝛼𝛼��𝑒𝑒

����� �

𝛼𝛼��𝑒𝑒�������  (26) 

 

𝛼𝛼�� � ���
� � 𝑠𝑠�𝜙𝜙�� � ����

�  ,     

𝛼𝛼�� � ���
� � 𝑠𝑠�𝜙𝜙�� � ����

�   (27 a,b) 
 

In order to determine the dimensionless fundamental 
natural frequency and its complementary (secondary) value, 
the characteristic equation of the system (𝑠𝑠� � 𝜙𝜙��𝑠𝑠 � 𝜙𝜙��� 
can be isolated by substituting s = ±iω into the characteristic 
equation  

 

𝜔𝜔�� � ����� �
� � �𝜙𝜙�� � ����

� �  

⟹𝜔𝜔� � �𝜙𝜙�� � ����
� ,𝜔𝜔� � ��𝜙𝜙��  (28 a,b) 

 
4. Results and discussion  

 
In this part, the results obtained from the analytic 

solution of the governing equation of an inclined, heated, 

4.  Results and discussion
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pinned ends pipe conveying fluid, Eq. (10), are presented. 
Especially, the effects of support angle, aspect ratio, and 
temperature on the natural frequencies and dynamic 
deflection are emphasized. The value of the main parameters 
employed for the current investigation are shown in Table 1 
and the results simulated in MATLAB 2019b software. 
Results are presented for a pipe manufactured from 
polypropylene random-copolymer (PP-R) material, and the 
fluid used in all cases was water. 
 
Table 1. 
Summary of main specifications and parameters of the 
numerical simulation 

Specification Value  
Inner diameter Di (m) 0.018 
Thickness t (m) 0.0035 
Aspect ratio (length to outer dimeter) 
L/Do 

(20-50) Do 

Modulus of elasticity E (GPa)  
at (25, 50, 70)°C 0.8, 0.38, 0.23 

Density of pipe ρp (Kg/m3) 909 
Density of fluid ρf (Kg/m3) 1000 
Coefficient of expansion α (1/K) 0.3x10-4 

 
4.1. Solution validation 
 

In order to verify the validity of the obtained results in 
the present formulation (via finite Fourier sine and Laplace 
transforms method) for handling the dynamic characteristic 
of the pipe-fluid system, the natural frequencies values 
obtained in Eq. 28 with its corresponding values of critical 
velocity are compared to the solutions obtained using a 
shooting method and Galerkin approximation, as described 
in Refs. [26,27] respectively. To establish verifications of 
our analysis, the following data were considered, the angle 
of support θ = 0 and mass ratio β = 0.5. The results are 
presented in Table 2 for both the natural frequencies and 
critical velocity. It can be seen from Table 2 that the present 
results agree very well with the solutions obtained using the 
shooting and Galerkin method thus the present formulation 
in handling the dynamic characteristic of the pipe-fluid  
 
Table 2. 
Comparison of natural frequency and critical velocity of 
pinned supported pipe 

Mode 
No. 

Natural Frequency ωn Critical Velocity Uc 
Ref. 18 Present   Ref. 19 Present 

1 9.89011 9.8696 3.15 3.1415 
2 39.5604 39.4784 6.245 6.283 
3 88.8312 88.8264 9.45 9.424 

system was verified. This suggests that the finite Fourier sine 
and Laplace transforms method is sufficiently accurate and 
efficient and more easer compared to the numerical method 
and the Galerkin approximation. 
 
4.2. Natural Frequency 
 

Continuity profile (single curve) for natural frequency 
will be presented in this study, instead of the separated 
profile of real and imaginary components of natural 
frequency as usually seen in literature, by introducing the 
absolute value of natural frequency to connect the 
subcritical, critical, and post-critical vibratory behaviours. 
This continuity profile represents the general behaviour of 
the system's natural frequencies. The obtained results reveal 
that the natural frequencies and dynamic response of the 
pipe system are strongly affected by factors such as the 
internal fluid velocity, aspect ratio, temperature, and angle 
support, etc. Two frequencies have been identified, the 
natural frequency and its complementary value. The effects 
of internal fluid velocity for the first three modes in each 
case have been investigated as shown in Figures 3 (a and b). 

The displayed figures are approximately identical for 
major and complementary natural frequency. As expected, 
the profiles are similar to earlier observations where is the 
increase in the flow velocity leads to weakening the pipe 
frequency. The behaviours of the natural frequencies 
indicate the existence of two zones that are similar to those 
of ref. [26,28,29] and each zone is reminiscent of the results 
reported in [26,27]. In all the cases, the natural frequency 
profiles at flow velocities below and up to the critical 
velocity, are ordered such that n1<n2<n3 where n1, n2, and 
n3 are the first, second, and third mode respectively. The 
critical velocities for the major and complementary natural 
frequency values corresponding to the modes are so ordered 
i.e. U1 < U2 < U3. As the flow velocity increases, the natural 
frequencies are asymptotically reduced to lower values in 
accordance with respective critical velocities. 

Whilst in Figure 4, the influence of aspect ratios on the 
first (fundamental) natural frequency corresponding to the 
n1 mode of vibration was presented. In general, the results 
have been shown that the aspect ratio has a significant effect 
on the natural frequency profiles irrespective of the zone.  
It is clear from results the natural frequencies are inversely 
proportional to the pipe aspect ratios and are observed to be 
decreasing in revised order to their corresponding critical 
velocities in the first zone before decreasing in a way 
become close to each other beyond the critical velocities in 
the second zone. This behaviour can be explained by the fact 
that the pipe becomes heavier in weight and weaker in its 
stiffness with increasing pipe aspect ratio. Meanwhile, the 
 

4.1.  Solution validation

4.2.  Natural frequency
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Fig. 3. Dimensionless absolute values of the transverse 
natural frequency vs. dimensionless flow velocity at the first 
three modes: (a) 𝜔𝜔� (b) 𝜔𝜔�∗ . at conditions L=20D m, 
T=25°C, θ = 0°  
 
level of decreasing in the magnitude of natural frequencies 
and critical velocity for the same aspect ratio reduces with 
increasing the support angle. For example, illustrated in 
Figures 4a-c is when the internal fluid velocity equal to zero, 
the natural frequency reduces from 9.806 to 7.244 as the 
aspect ratio increase from 20 to 50 at a support angle equal 
to 0°, whereas the natural frequency reduces from 9.813 to 
9.107 as aspect ratio increase from 20 to 50 at a support 
angle equal to 30°. Meanwhile, the critical flow velocity is 
3.122 for the pipe model at L/D=20, and when the L/D is 
increasing to 50, the critical flow velocity reduces to 2.306. 
This behaviour can be associated with the increase in the 
axial tension force in the pipe bend, which plays a stiffening  
 

 

 

 
 
Fig. 4. Variation of dimensionless absolute values of the 
transverse natural frequency with dimensionless flow 
velocity for different aspect ratios at T=25°C: a) θ = 0°,  
b) θ = 15°, c) θ = 30° 
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role, with increasing the angle of inclination. These are 
consonant with earlier results [30], which showed that any 
increase in aspect ratio results in reducing of the natural 
frequency and critical fluid velocity. 

Figure 5 depicts the absolute dimensionless natural 
frequency versus support angles at different aspect ratios 
with constant flow velocity U=1 and temperature equal to 
25°C. In general, increasing the inclination angle of the pipe 
with the horizontal axis in the range of (0°-90°) leads to 
enhance the pipe frequency, and then after the angle 90° this 
behaviour is reversed. Moreover, it is noticed that when the 
aspect ratio is larger, the effect of the inclination angle of the 
pipe on the magnitude of natural frequency becomes more 
noticeable. At angles between (40°-140°), the influence of 
the inclination angle becomes more predominant and 
reverses the influence of the aspect ratio.  i.e. at angles lie in 
the range of (40°-140°) the natural frequency of the pipe 
increase with increasing aspect ratio. For example, at a 
support angle equal to 80°, when L/D=20, the natural 
frequency is close to 9.2071, and when L/D=50, the 
magnitude of the natural frequency increase to be close to 
10.1303.  
 

 
 
Fig. 5. Variation of dimensionless absolute values of the 
transverse natural frequency with support angle for different 
aspect ratios at U=1, T=25°C 
 

The effect of support angle variation with different flow 
velocities on the fundamental natural frequency characte-
ristics is more analysed in Figures 6(a-c). The general 
pattern indicates that the natural frequency is slightly 
increasing proportionally from θ =0° to θ =30°, irrespective 
of any flow velocity. This behaviour may be associated with 
developing an axial component of gravitational load for the  
 

 

 

 
 
Fig. 6. Variation of dimensionless absolute values of the 
transverse natural frequency with dimensionless flow 
velocity for different support angles and different aspect 
ratios at T=25°C: a) L/D = 20, b) L/D = 30, c) L/D = 50 

b 
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Fig. 7. Variation of the dimensionless absolute values of the 
transverse natural frequency with dimensionless fluid 
velocity with varying temperatures and different aspect 
ratios at T=25°C: a) L/D = 20, b) L/D = 30, c) L/D = 50 

inclined pipe. A small increase in the axial tension of the 
pipe can be caused by this axial component, and it leads to 
an increase in the natural frequency and critical flow velocity 
of the pipe. 

Another observation has resulted when the pipe, resting 
on supports that inclined to an angle with the horizontal axis, 
subjected to the thermal effect as it is indicated in the next 
results. The pipe containing flowing fluid under thermal 
effect is susceptible to lose its stability by the action of two 
types of compressive stresses; thermal stress, which 
introduces due to temperature variation; and the stress 
arising from the internal fluid velocity. However, the stress 
arising from the internal fluid velocity is significantly lower 
than the thermal stress [31], and hence the temperature 
variation in the pipe is a very important factor and 
considering more significant in comparison with the steady 
flow velocity in respect of its (pipe) divergence instability. 
So, the effect of temperature variation on the natural 
frequency and critical velocity of the inclined pipe is studied 
through the results in Figure 7, where, the effects of 
temperature variation on the fundamental natural frequency 
for different flow velocities are demonstrated. 

Generally, increasing the pipe temperature leads to 
reduce the pipe frequency for all aspect ratios. However, this 
effect becomes more remarkable with a larger aspect ratio. 
Any further increase in internal fluid velocity after their 
critical value leads to converging the lines, which represent 
the natural frequency for each temperature, and become 
closer to each other. This behaviour was confirmed by the 
earlier works done by Refs. [32-34], which revealed that  
 

 
 
Fig. 8. Variation of the dimensionless absolute values of the 
transverse natural frequency with support angle for different 
temperatures at U = 1, L/D = 20 
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natural frequencies are inversely proportional to temperature 
whether of a tuning fork [32], a plate [33], or a rod [34]. 
Likewise, the critical flow velocity is reduced as the 
temperature of the pipe increases, i.e. accelerate the 
instability of the system. This behaviour may be associated 
with the softening effect, which increases at elevated 
temperatures, which can cause the frequency and critical 
flow velocity to decrease. 

Figure 8 depicts the absolute dimensionless natural 
frequency versus support angles for varying temperatures at 
a constant flow velocity U=1. The figure shows that the 
influence of support angles has no significance at relatively 
low temperatures, but it becomes more noticeable at higher 
temperatures.  
 
 
5. Conclusion  
 

Through the theory and numerical simulations for the 
present study, it can be drawn the following main 
conclusions: 
 The finite Fourier sine and Laplace transforms technique 

offers a more convenient alternative to calculate the 
dynamic characteristic of pipes conveying fluid. 

 The natural frequencies and critical velocity were 
inversely proportional to the internal fluid velocity, 
aspect ratio, temperature variation, and mode number. 

 Increasing the inclination angle with the horizontal axis 
from 0° up to 90° will lead to an increase to the natural 
frequency and critical fluid velocity. This behaviour is 
reversed at inclined angles larger than 90° and below 
180°. 

 There is an optimum value for the aspect ratio with  
the angle of inclination with the horizontal axis that gives 
the larger natural frequency and critical velocity of the 
fluid.  

 When the aspect ratio is larger, the corresponding natural 
frequency reduces more dramatically with increasing the 
internal fluid velocity. 

 At aspect ratio equal to 50, the natural frequency of the 
pipe increases by 27% when the angle of inclination is 
increased to 40°, while it decreases by 75% when the 
temperature is increased to 75°C. 
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