Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we introduce a technique to produce a new family of tempered stable distributions. We call this family asymmetrically tempered stable distributions. We provide two examples of this family named asymmetrically classical modified tempered stable (ACMTS) and asymmetrically modified classical tempered stable (AMCTS) distributions. Since the tempered stable distributions are infinitely divisible, Lévy processes can be induced by the ACMTS and AMCTS distributions. The properties of these distributions will be discussed along with the advantages in applying them to financial modeling. Furthermore, we develop exponential Lévy models for them. To demonstrate the advantages of the exponential Lévy ACMTS and AMCTS models, we estimate parameters for the S & P 500 Index.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
85--98
Opis fizyczny
Bibliogr. 21 poz., tab., wykr.
Twórcy
autor
- Department of Statistics, Allameh Tabataba’i University, Iran
autor
- Department of Statistics, Allameh Tabataba’i University, Iran
Bibliografia
- [1] O. E. Barndorff-Nielsen and S. Z. Levendorskiĭ, Feller processes of normal inverse Gaussian type, Quant. Finance 1 (3) (2001), pp. 318-331.
- [2] M. L. Bianchi, S. T. Rachev, Y. S. Kim, and F. J. Fabozzi, Tempered infinitely divisible distributions and processes, Theory Probab. Appl. 55 (1) (2010), pp. 59-86.
- [3] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Political Economy 81 (3) (1973), pp. 637-654.
- [4] S. I. Boyarchenko and S. Z. Levendorskiĭ, Option pricing for truncated Lévy processes, Int. J. Theor. Appl. Finance 3 (3) (2000), pp. 549-552.
- [5] P. Carr, H. Geman, D. Madan, and M. Yor, The fine structure of asset returns: An empirical investigation, J. Business 75 (2) (2002), pp. 305-332.
- [6] R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall/CRC, Boca Raton 2004.
- [7] H. U. Gerber and E. S. W. Shiu, Option pricing by Esscher transforms (with discussions), Trans. Soc. Actuar. 46 (1994), pp. 99-191.
- [8] H. U. Gerber and E. S. W. Shiu, Actuarial bridges to dynamic hedging and option pricing, Insurance Math. Econom. 18 (3) (1996), pp. 183-218.
- [9] S. R. Hurst, E. Platen, and S. T. Rachev, Option pricing for a logstable asset price model, Math. Comput. Modelling 29 (1999), pp. 105-119.
- [10] Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi, A new tempered stable distribution and its application to finance, in: Risk Assessment: Decisions in Banking and Finance, G. Bol, S. T. Rachev, and R. Wuerth (Eds.), Physika Verlag, Springer, 2008, pp. 77-119.
- [11] Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi, Tempered stable and tempered infinitely divisible GARCH models, Technical Report, University of Karlsruhe and KIT, 2009.
- [12] Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi, Tempered stable and tempered infinitely divisible GARCH models, J. Bank. Finance 34 (9) (2010), pp. 2096-2109.
- [13] Y. S. Kim, S. T. Rachev, D. M. Chung, and M. L. Bianchi, The modified tempered stable distribution, GARCH models and option pricing, Technical Report, Chair of Econometrics, Statistics and Mathematical Finance, School of Economics and Business Engineering, University of Karlsruhe, 2008.
- [14] Y. S. Kim, S. T. Rachev, D. M. Chung, and M. L. Bianchi, A modified tempered stable distribution with volatility clustering, in: New Developments in Financial Modelling, J. O. Soares, J. P. Pina, and M. Catalaõ-Lopes (Eds.), Cambridge Scholars Publishing, Newcastle upon Tyne 2008, pp. 344-365.
- [15] Y. S. Kim, S. T. Rachev, D. M. Chung, and M. L. Bianchi, The modified tempered stable distribution, GARCH models and option pricing, Probab. Math. Statist. 29 (1) (2009), pp. 91-117.
- [16] I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process, Phys. Rev. E 52 (1995), pp. 1197-1199.
- [17] U. Küchlera and S. Tappe, Tempered stable distributions and processes, Stochastic Process. Appl. 123 (2013), pp. 4256-4293.
- [18] A. L. Lewis, A simple option formula for general jump-diffusion and other exponential Lévy processes, SSRN Electronic Journal, May 2002.
- [19] J. Rosiński, Tempering stable processes, Stochastic Process. Appl. 117 (6) (2007), pp. 677-707.
- [20] J. Rosiński and J. L. Sinclair, Generalized tempered stable processes, in: Stability in Probability, J. K. Misiewicz (Ed.), Banach Center Publ., Vol. 90, Warsaw 2010, pp. 153-170.
- [21] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd264f90-ffa1-4eac-b5de-300814fa1667