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Abstract

There has been an amplified focus on and benefit from the adoption of artificial intelli-
gence (AI) in medical imaging applications. However, deep learning approaches involve
training with massive amounts of annotated data in order to guarantee generalization and
achieve high accuracies. Gathering and annotating large sets of training images require
expertise which is both expensive and time-consuming, especially in the medical field.
Furthermore, in health care systems where mistakes can have catastrophic consequences,
there is a general mistrust in the black-box aspect of AI models. In this work, we focus on
improving the performance of medical imaging applications when limited data is available
while focusing on the interpretability aspect of the proposed AI model. This is achieved
by employing a novel transfer learning framework, progressive transfer learning, an au-
tomated annotation technique and a correlation analysis experiment on the learned repre-
sentations.

Progressive transfer learning helps jump-start the training of deep neural networks
while improving the performance by gradually transferring knowledge from two source
tasks into the target task. It is empirically tested on the wrist fracture detection application
by first training a general radiology network RadiNet and using its weights to initialize
RadiNetwrist, that is trained on wrist images to detect fractures. Experiments show that
RadiNetwrist achieves an accuracy of 87% and an AUC ROC of 94% as opposed to 83%
and 92% when it is pre-trained on the ImageNet dataset.

This improvement in performance is investigated within an explainable AI framework.
More concretely, the learned deep representations of RadiNetwrist are compared to those
learned by the baseline model by conducting a correlation analysis experiment. The re-
sults show that, when transfer learning is gradually applied, some features are learned
earlier in the network. Moreover, the deep layers in the progressive transfer learning
framework are shown to encode features that are not encountered when traditional trans-
fer learning techniques are applied.

In addition to the empirical results, a clinical study is conducted and the performance
of RadiNetwrist is compared to that of an expert radiologist. We found that RadiNetwrist ex-
hibited similar performance to that of radiologists with more than 20 years of experience.

Marı́a E. Pérez-Pons, Javier Parra-Dominguez, Sigeru Omatu, Enrique Herrera-Viedma, Juan Manuel Corchado

[38] Jan Kalina and Jaroslav Hlinka. On coupling
robust estimation with regularization for high-
dimensional data. In Data Science, pages 15–27.
Springer, 2017.

[39] Barbara Kitchenham and Pearl Brereton. A sys-
tematic review of systematic review process re-
search in software engineering. Information and
software technology, 55(12): 2049–2075, 2013.

[40] Barbara Kitchenham and Stuart Charters. Guide-
lines for performing systematic literature reviews
in software engineering. Citeseer, 2007.

[41] Barbara A Kitchenham, David Budgen, and
O Pearl Brereton. Using mapping studies as the ba-
sis for further research–a participant-observer case
study. Information and Software Technology,
53(6): 638–651, 2011.

[42] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas.
Supervised machine learning: A review of classifi-
cation techniques. Emerging artificial intelligence
applications in computer engineering, 160(1): 3–
24, 2007.

[43] Vladik Kreinovich, Nguyen Ngoc Thach,
Nguyen Duc Trung, and Dang Van Thanh.
Beyond Traditional Probabilistic Methods in
Economics, volume 809. Springer, 2018.

[44] Yan Liu and Tian Xie. Machine learning versus
econometrics: prediction of box office. Applied
Economics Letters, 26(2): 124–130, 2019.

[45] Marcos Lopez de Prado. Beyond econometrics:
A roadmap towards financial machine learning.
Available at SSRN 3365282, 2019.

[46] Sheng-Xiang Lv, Lu Peng, and Lin Wang. Stacked
autoencoder with echo-state regression for tourism
demand forecasting using search query data. Ap-
plied Soft Computing, 73: 119–133, 2018.

[47] Dusan Marcek. Statistical models and granular
soft rbf neural network for malaysia klci price in-
dex prediction. In International Work-Conference
on Time Series Analysis, pages 401–412. Springer,
2016.

[48] Sendhil Mullainathan and Jann Spiess. Machine
learning: an applied econometric approach. Jour-
nal of Economic Perspectives, 31(2): 87–106,
2017.

[49] P Murali, R Revathy, S Balamurali, and
AS Tayade. Integration of rnn with garch re-
fined by whale optimization algorithm for yield
forecasting: a hybrid machine learning approach.
JOURNAL OF AMBIENT INTELLIGENCE
AND HUMANIZED COMPUTING, 2020.

[50] Hung T Nguyen, Nguyen Duc Trung, and
Nguyen Ngoc Thach. Beyond traditional proba-
bilistic methods in econometrics. In International
Econometric Conference of Vietnam, pages 3–21.
Springer, 2019.

[51] Isaac Odun-Ayo, Olasupo Ajayi, Rowland Goddy-
Worlu, and Jamaiah Yahaya. A systematic map-
ping study of cloud resources management and
scalability in brokering, scheduling, capacity plan-
ning and elasticity. Asian Journal of Scientific Re-
search, 2019.

[52] Sharyn O’Halloran, Marion Dumas, Sameer
Maskey, Geraldine McAllister, and David K Park.
Computational data sciences and the regulation of
banking and financial services. In From Social
Data Mining and Analysis to Prediction and Com-
munity Detection, pages 179–209. Springer, 2017.

[53] Timothy Oladunni and Sharad Sharma. Hedo-
nic housing theory—a machine learning investiga-
tion. In 2016 15th IEEE International Conference
on Machine Learning and Applications (ICMLA),
pages 522–527. IEEE, 2016.

[54] Meryem Ouahilal, Mohammed El Mohajir, Mo-
hamed Chahhou, and Badr Eddine El Mohajir. A
novel hybrid model based on hodrick–prescott fil-
ter and support vector regression algorithm for op-
timizing stock market price prediction. Journal of
Big Data, 4(1): 31, 2017.

[55] Miguel Paredes. A case study on reducing auto
insurance attrition with econometrics, machine
learning, and a/b testing. In 2018 IEEE 5th In-
ternational Conference on Data Science and Ad-
vanced Analytics (DSAA), pages 410–414. IEEE,
2018.
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This motivates follow-up research to train on more data to feasibly surpass radiol-
ogists’ performance, and investigate the interpretability of AI models in the healthcare
domain where the decision-making process needs to be credible and transparent.
Keywords: deep learning, transfer learning, wrist fracture detection, medical informatics,
progressive transfer learning

1 Introduction

Diagnosing wrist fractures from plain radio-
graphs is not an easy task due to complex anatom-
ical structures and the variability of fracture types
[1]. An accurate diagnosis requires the expertise of
trained and specialized orthopedic physicians who
are not always available in any Emergency Rooms
(ERs) to assess urgent wrist fracture cases. Misdi-
agnosed fractures can cause bone displacement or
internal injuries which can severely affect the pa-
tient [2]. Wrist fractures are one of the most com-
mon fracture types in ERs, in both adults and chil-
dren [3, 4], yet remain one of the most frequently
misdiagnosed [5, 6]. Consequently, developing a
more automated method of evaluating possible frac-
tures in the wrist from plain radiographs can have a
substantial positive impact on the ER by saving time
and improving support for both the hospital and the
patient. Beyond the ER, this could also be particu-
larly attractive for universities’ health services, and
sports resorts where medical facilities and support
are not regularly available. For such cases, an X-ray
would be immediately read by an intelligent soft-
ware to help in the triage of patients needing medi-
cal care, assurance and rest.

Advances in artificial intelligence have shown
remarkable success in improving the performance
of medical imaging applications [7]. Specifically,
Deep Learning (DL) algorithms have been success-
fully applied to minimize the classification or di-
agnosis error in wrist fracture radiographs [8, 9,
10]. However, such networks require a significant
amount of annotated data in order to produce accu-
rate solutions, which poses a new challenge in the
medical domain where data acquisition is expensive
and time-consuming when available. Recently, re-
searchers focused on developing approaches to en-
hance or accelerate the performance of DL, mainly
when limited data is available for training. Trans-
fer learning (TL) is a successful method to accel-

erate DL’s integration into the medical field. TL
would facilitate feature extraction for small datasets
of medical images and improving model perfor-
mance in diagnosing fractures [11, 12, 13, 14]. Fur-
thermore, automated annotation has been used to
increase the size of datasets used in the training of
DL algorithms [15, 16]. Although such DL models
have proven successful, their lack of interpretabil-
ity has limited the adoption of AI models in critical
decision making domains such as the medical field.

To remedy the aforementioned challenges, we
propose employing a two-tiered domain general
transfer learning that gradually transfers feature
representations by first transferring general fea-
tures learned on a general classification task then
specific features learned on a more related task.
In the context of wrist fracture detection, pro-
gressive transfer learning is used to transfer gen-
eral features from ImageNet [17] to effectively
train RadiNet on a large set of radiology images.
RadiNet is later used to transfer radiology-specific
features to RadiNetwrist, a wrist fracture classifier.
To further improve the performance of RadiNetwrist,
an automated annotation technique is developed to
utilize Natural Language Processing (NLP) tech-
niques in order to analyze radiologists’ reports and
annotate XRay images for use in the training pro-
cess. Finally, to engender the medical community
trust’s in the progressive transfer learning frame-
work, we thoroughly interpret the deep model rep-
resentations by studying the learned features in
the employed framework as well as the traditional
transfer learning framework and their correlations.
RadiNet is publicly available at [18] so that it can
be used as a radiology-specific pre-trained network
and help jump-start the performance of radiology
networks.

RadiNet pre-training is shown to outperform
other pre-training methods including the state-of-
the-art ImageNet pre-trained network on the wrist
fracture detection and on other radiology applica-
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tions including finger, shoulder and elbow fracture
detection by 4% in accuracy and 2% in AUC ROC.
RadiNetwrist’s performance is tested against expert
radiologists where it achieved a comparable accu-
racy. Besides, the interpretability experiment shows
that the progressive TL model is able to learn, in its
early and mid layers, almost the same representa-
tions that the traditional TL model is able to learn
in its very deep layers. Additionally, progressive TL
is able to learn advanced deep representations that
are not relatively encountered in the traditional TL
model.

The contributions of this work are

– a novel transfer learning approach, progres-
sive transfer learning, which gradually trans-
fers general and domain-specific features from
two source tasks to the target task in the medi-
cal imaging domain. Our proposed approach is
model-agnostic, i.e. it does not make any as-
sumptions on the underlying model. Moreover,
our approach does not require any network ar-
chitecture modification.

– A classifier that makes use of the proposed pro-
gressive learning to detect wrist fractures accu-
rately. This classifier is further extended to im-
prove the performance of general radiology pre-
diction tasks and is publicly available at [18].

– NLP techniques to perform automated annota-
tion of XRay images based on the reports of ex-
pert radiologists.

– A comparative clinical study where the perfor-
mance of RadiNetwrist is compared to expert ra-
diologists.

The rest of the paper is organized as follows:
the literature on fracture detection and automated
annotation is presented and compared to this work
in Section 2. Then, progressive and cross domain
transfer learning and its application to the wrist
fracture detection along with the automated anno-
tation are described in Section 3. Finally, the exper-
imental setup and results are described in Section 4
before Section 5 concludes the work.

2 Related Work

2.1 Wrist Fracture Detection

Recent years have witnessed a great success
of DL algorithms [19] used in medical applica-
tions [7, 20, 21, 22, 23] raging from mammogra-
phy [13, 24, 25, 26] to tomography [27, 28, 29, 30]
and ultra-sound [31, 32, 33]. [34] and [35] present
an overview of deep learning approaches applied on
fracture detection from radiographs and CT scans.
Moreover, [36] highlights that fracture detection
systems offer poor generalization guarantees when
tested on unseen data. Image enhancement tech-
niques have been utilized in [37] to improve the
performance of deep networks for arm fracture de-
tection. TL [38, 39] has been also applied to
deep networks in order to improve model gener-
alization while reducing needed computational re-
sources and data hunger, the latter of which is es-
pecially useful in the medical field where collecting
and labeling radiography images can be challenging
[11, 12, 13, 14].

As a result, most recent work in radiology [12,
40, 41, 42] has employed TL in order to boost the
model’s accuracy by initializing its weights from
state-of-the-art pre-trained networks, such as Im-
ageNet [17, 43] Inception-ResNet [44] and Faster
R-CNN [45]. High accuracy results are reported
on a variety of fracture detection in radiographs
for various body parts such as hips [46], humeri,
forearms, and other various parts [47]. Similar ap-
proaches have been applied to wrist fracture detec-
tion. For instance, in [8], Inception v3 network was
fine-tuned on 11,112 images to predict “fracture”
or “no fracture” and achieved an area under the re-
ceiver operator characteristic curve (AUC) of 0.954.
Similar work has been done by Olczak et al. in [9]
who combined multiple exam views to predict the
possibility of wrist fracture. Compared to two or-
thopedic surgeons who reviewed the images at the
same resolution, the model was able to achieve an
83% accuracy and a 0.76 as Cohen’s kappa metric.
Recently, in [48], Faster-R-CNN [45] was trained to
extract the distal radius on wrist radiographs as the
regions of interest before a CNN model detects the
distal radius fracture achieving a 93% accuracy.

While this straight-forward use of TL is ben-
eficial, some researchers have taken different ap-
proaches that are more domain-specific. For in-
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stance, in [49], a double transfer learning approach
is used to classify malign and benign histopatho-
logical images for breast cancer. The first step is
a feature representation transfer from the ImageNet
dataset to the histopathological images dataset for
convolutional neural networks, and the second
step is to train an SVM classifier on a different
dataset in order to filter out irrelevant patches in
the target dataset. More specifically, Lindsey et
al. [10] applied a domain-specific TL approach
in wrist fracture detection. The authors used a
dataset of 135,845 radiographs from various body
parts, 34,990 of which were wrist radiographs.
They used the remaining 105,855 as a pretrain-
ing set and fine-tuned their resulting model on the
34,990 wrist images to achieve a 47% decrease
in the misinterpretation rate compared to emer-
gency medicine clinicians. Other researchers tackle
multi-source domain transfer learning approaches,
transferring knowledge from multiple datasets at
once. Christodoulidis et. al. [50] use 6 source
datasets containing texture information to pre-train
6 CNN networks, which are then fine-tuned on the
target dataset of lung tissue, and fused into one
model through ensembling. Other methods also
involve multiple classification models where some
kind of selection or ensembling technique is used
([51, 52]). Yu, et al. [54] and Hu et al. [54] pro-
pose two independent methods dubbed “progressive
transfer learning” as a way to modify existing trans-
fer learning techniques. For instance, [54] intro-
duce the “progressive” aspect of transfer learning
on batch-related convolutional cells that are trained
on batches of highly variable image data (e.g. view-
points, occlusions, illumination). These cells en-
code the dataset information in a latent state used
to correct the extracted feature for a given batch.
The “progressive” TL of this work is applied on the
training phases and is thus different than that of [54]
which is applied on the network structure. More
specifically, [54] assume a batched architecture of
convolutional cells that control the TL, whereas our
approach works on any deep network by consider-
ing a two-phase training paradigm.

[54] use the term “progressive” approach on the
training dataset to encompass more information as
the training progresses. The approach proposed in
[54] is fundamentally different from our proposed
“progressive” TL. First, their model is application-
specific and it is the fusion of deep learning with

feature engineering concepts. Second, their “pro-
gressive” learning assumes two models: a velocity
model and a deep network, and updates their param-
eters in a complementary fashion toward conver-
gence. On the contrary, our approach is not bound
to a particular application and only requires a deep
network without any further assumptions.

Gu et al. [54], on the other hand, suggested
the “progressive transfer learning” term to describe
a domain adaptation technique that works by first
fine-tuning an already pre-trained network on target
datasets and assess the model’s performance on a
variety of medically-related tasks. While their two-
tired TL approach is somewhat similar to ours, the
type of tasks and data used in the different steps
of the progressive transfer learning differ. We call
the reader’s attention to the fact that [55] made use
of synthetic data to improve the performance of
their model and provide some robustness guaran-
tees. While the application of GANs is not straight-
forward in the context of automating fracture gen-
eration, we utilize general radiology XRays to pre-
train RadiNetwrist. This general pre-training step
results in a radiology-specific pretrained network
RadiNet, and will be publicly available at [18] to
jump-start the performance of wider medical ap-
plications. In contrast, instead of an intermedi-
ate general classification step preceding a final spe-
cific classification task, the progressive TL pipeline
in [55] is in fact the same classification task on
7 classes, but with different datasets. Addition-
ally, we reinforce our progressive and cross do-
main transfer learning model with experiments in-
spired from the explainability of artificial intelli-
gence models. This will highlight the correlation in
the learned representations between the single and
progressive transfer learning approaches in order to
explain the improved performance of progressive
transfer learning models. Moreover, we support our
work by a clinical study conducted by expert radiol-
ogists to compare the performance of our model to
the medical assessment of these skilled specialists.

2.2 Automated Annotation

Besides TL, automated annotation is an attempt
at overcoming problems caused by data shortages,
more specifically, annotated data shortages. Even
when data is available, it cannot be used to train
supervised deep learning algorithms without task-
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specific annotations. In the medical field, the lack of
annotated data is an even more prominent issue be-
cause of the training and expertise required to label
medical datasets, which cannot be done by a layper-
son.

Existing work focuses on linguistic-based ap-
proaches to utilize previous annotations to annotate
similar medical documents. For instance, in [15],
linguistic-based, and reuse-based approaches were
investigated to semantically annotate medical doc-
uments such as Electronic Health Records (EHR)
with concepts of ontology and achieved an accu-
racy of 59%. In [56], Antolik proposed a novel
approach to transferring the information written in
medical records into structured EHRs. The pre-
liminary results show that automatic annotation of
medical records helps in building systems that can
substantially reduce the effort physicians have to
conduct when relatively small amounts of data are
available. Moreover, Klassen, Xia, and Yetisgen-
Yildiz utilized advanced Natural Language Process-
ing (NLP) tools to mark change-of-state events,
diagnosis events, coordination, and negation [16].
Their system automatically identifies named enti-
ties and medical events in clinical notes with an f-
score of 94.7% and 91.8%, respectively.

More recently, automated annotation has been
employed to label medical reports term in Serbian.
Medication detection in primary care visit conver-
sations was addressed in [57] and automated an-
notation was proven successful in improving the
detection performance. Beyond textual data, au-
tomated annotation has been also used to anno-
tate medical images such as in [58] through semi-
supervised learning and achieved an 89.8% of pap-
illary thyroid carcinoma regions detection accuracy.

For medical imaging applications, automatic
annotation has to rely on existing reports, such as
the radiologist report for XRays in fracture diag-
nosis. It is common practice for these reports to
accompany medial imaging test results. Bouslimi
and Akaichi [59] utilize a multi-modal approach
for semantic annotation in medical imaging, by en-
coding medical reports with textual bag-of-words,
and medical images with visual bag-of-words, be-
fore finally combining the two representations us-
ing Latent Semantic Analysis (LSA). In [60], re-
searchers used radiology reports to extract medical
terminology and map it using MetaMap [61] in or-

der to generate links between pathology concepts
and anatomical locations, which can later be used
to segment images into regions of interest (ROIs).

2.3 Explainable AI

Explainability methods usually target the model
outputs and attempt at generating explanations for
a particular model’s decision [62, 63, 64]. Im-
age classification tasks rely heavily on these tech-
niques, such as visualizing the attention over the
input by using the convolutional layers’ ability to
localize objects [65], with methods such as Class
Activation Maps (CAM) [66], Grad-CAM [67], U-
CAM [68]. The usefulness of these techniques also
stems from their model-agnosticism: by examin-
ing the outputs, they eliminate the need to be spe-
cific in their knowledge of the model’s internals, as
exemplified by LIME: Local Interpretable Model-
Agnostic Explanations [69]. Other methods inves-
tigate how patterns are encoded in a deep network
[70, 71, 72, 73, 74]. Layer-Wise Relevation Prop-
agation (LRP) [75] traces back input contributions
to the final output node on a layer-by-layer basis,
and has been used to explain decisions in MRI-
based Alzheimer’s disease classification [76] and
multiple sclerosis diagnoses [77]. Canonical Cor-
relation Analysis (CCA) [78] is a particular exam-
ple of methods that attempt to understand how en-
coded knowledge relates to human-understandable
concepts. CCA has been used to measure the corre-
lation between the brain activity as modeled in deep
networks and measured in real-time scenarios [79].
CCA has been also used to train word embeddings
in multi-lingual language models [80] and to cor-
relation knowledge encoding in an interpretability
framework [81].

3 Methodology

In this section, we first present the math-
ematical formulation of the progressive transfer
learning, then we develop RadiNet, our deep pre-
trained network for radiology applications, and
RadiNetwrist, a deep network for wrist fracture de-
tection. Lastly, we describe how the automated an-
notation is used to increase the size of the dataset
on which RadiNetwrist is trained.
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3.1 Progressive Transfer Learning

In their early layers, deep neural networks learn
non-linear representations of the input as low-level
and high-level features which are then used to learn
a classification in the last layers [82, 83]. Instead
of learning the input representation from scratch,
transfer learning can relay knowledge from a pre-
viously learned task where deep representations
are learned on large sets of data. Specifically, in
the inductive transfer learning settings, a predictive
model in the target task where annotated data exists
is learned by transferring knowledge from a source
task where annotated data may or may not be avail-
able [38]. In this work, we extend inductive trans-
fer learning to a novel progressive transfer learning
approach where knowledge is transferred from two
source tasks to the target task gradually.

Definition 1 (Progressive Transfer Learning) Given
two source domains Dg and Dr and their respec-
tive learning tasks Tg and Tr, a target domain Dt

and its corresponding learning task Tt , progressive
transfer learning aims at improving the learning of
the target predictive function fT (.) in Dt using the
general knowledge in Dg embedded within the re-
stricted knowledge in Dr.

Specifically, we define Dg = {Xg,P(Xg)}, Dr =
{Xr,P(Xr)} and Dt = {Xt ,P(Xt)}, where Xg (Xr, Xt

resp.) is the feature space of the general (restricted,
traget resp.) domain and P(X)g, P(X)r and P(X)t

are the marginal probability distributions with:

– Xt = {(xxx(1)t ,yyy(1)),(xxx(2)t ,yyy(2)), . . . ,(xxx(N)
t ,yyy(N))} is

a sample of labeled instances in the target do-
main where each x(i)t is a vector of pixels intensi-
ties representing the image i and yyy(i) is the label
vector

– Xg = {(xxx(1)g ,yyy(1)),(xxx(2)g ,yyy(2)), . . . ,(xxx(Ng)
g ,yyy(Ng))}

is a sample of general labeled instances not nec-
essarily related to instances in Xt .

– and Xr = {(xxx(1)s ,yyy(1)),(xxx(2)r ,yyy(2)), . . . ,(xxx(Nr)
r ,yyy(Nr))}

is a sample of labeled instances more similar to
Xt .

It is worth mentioning that x(i)g and x(i)r have the
same modality as xxx(i)t , i.e. images, but are not nec-
essarily of the same nature.

Progressive and cross domain transfer learning
works as follows: first, general feature representa-
tion is transferred from Dg and task Tg to efficiently
learn restricted feature representation on task Tr in
Dr. Once the general knowledge is embedded in
the predictive function fT (.) in Dr, the feature rep-
resentation in Dr is transferred to the target task Tt

as shown in Figure 1.

Figure 1. Progressive transfer learning workflow

Given the above, one can explain the difference
between inductive and progressive TL as follows:
while the former transfers the knowledge from a
source task to the target task in a one-shot, the lat-
ter performs it in a stepwise fashion. In particu-
lar, progressive transfer learning first transfers gen-
eral knowledge from a source task to another inter-
mediate more restricted source task, then transfers
the learned restricted knowledge to the target task.
This technique can be viewed under the scope of
multi-source domain transfer learning, applied to a
single learner through step-wise, sequential weight-
initialization as opposed to other methods where
multiple learners pre-trained on different source do-
mains are fused back into one through ensembling
or boosting approaches.

3.2 RadiNet And RadiNetwrist in Wrist
Fracture Detection

In this work, the goal, i.e. target task, is to pre-
dict wrist fracture from plain radiographs. The gen-
eral feature representation consists of image fea-
tures, not necessarily specific to the medical do-
main, such as edges, corners, and lines and the re-
stricted features are those specific to XRay images
such as skewness and energy levels. For this pur-
pose, we define Xg to be a collection of general im-
ages, such as ImageNet data, with Tg their classi-
fication task, Xr to be a collection of XRay images
(not necessarily wrist data) and Tr their correspond-
ing classification task and Xt to be the set of wrist
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Figure 2. RadiNet architecture

XRay images with Tt being the fracture detection
task defined on Xt .

Figure 3. Progressive transfer learning workflow
on the wrist fracture detection problem

The architecture of RadiNet is shown in Fig-
ure 2: it takes as input an XRay image and pre-
dicts which part of the body the XRay corresponds
to: humerus, shoulder, finger, hand, forearm, or
wrist. As shown in Fig 3, RadiNet is initialized
by the weights learned in Dg to learn general fea-
ture representations and fine-tuned in Dr to learn
knowledge representations that are restricted to the
medical domain. The weights of RadiNet are fur-
ther used in the initialization of RadiNetwrist in Dt

where RadiNetwrist takes as input an XRay image
of the wrist and predicts whether or not this wrist
presents a fracture. When pre-training occurs, the
target training set in any of the source datasets, that
is: Xt �⊂ Xg and Xt �⊂ Xr. It’s worth noting that

RadiNet could be further used as a domain-specific
pre-trained network for different radiology applica-
tions.

3.3 Automated Labeling

Radiology reports accompany medical imaging
in order to interpret the current results (i.e. sus-
pected diagnosis), as well as provide a better un-
derstanding of the clinical context (e.g. past med-
ical history) [84]. These reports written by trained
radiologists can be used to label using NLP the cor-
responding radiographs. This would provide re-
searchers annotated datasets without the need of
manual intervention which is resource consuming
specially if coupled with lack of radiology exper-
tise. In this work, we are presented with N1 anno-
tated training samples, i.e. N1 tuples (xxxi,repi,yi),
where xxxi is the vector representing the pixels’ inten-
sities of the XRay image, repi is the radiologist re-
port written in English and yi is 0 if there is no wrist
fracture, 1 otherwise. We are also presented with
N2 tuples of the form (xxxi,repi), i.e. XRay images
that are not annotated but that are complemented
with reports repi written by expert radiologists. To
improve the performance of RadiNetwrist, the ad-
ditional N2 images are annotated in an automated
manner and used in the training process.

For this purpose, a classifier is trained on the N1
annotated instances of the form (repi,yi) where the
complementary reports repi, written in English, are
vectorized into arrays a ∈Rc of token counts where
c is the total number of single words, bi-grams and
tri-grams in the training set. More specifically, the
vectorization of repi produces ai where ai[ j] is the
number of times the word, bi-gram or tri-gram j ap-
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pears in repi as shown in Figure 4. The classifier is
then fed the pair (ai,yi). After training and testing
for accuracy on the annotated dataset, the classifier
is then used to infer yi for the N2 non-annotated in-
stances. The N2 non-annotated instances represent
around 35% of the final dataset used for training.

4 Experimental Results

In what follows, we start by describing the ex-
perimental setup, datasets and baseline models used
in this work in Sections 4.1, 4.2 and 4.3 respec-
tively. We then report the results of the follow-
ing contributions: the performance of progressive
transfer learning in 4.4, automated annotation in
Section 4.5, generalization to other radiology appli-
cations in Section 4.6 and finally the XAI dissection
in Section 4.7, the comparison with existing work
and the clinical case in Sections 4.8 and 4.9.

4.1 Experimental Setup

The experiments are run on Nvidia Tesla M60
GPU. The algorithms are written in Python 3.6.5
using Keras as a high-level API running on top of a
Theano backend [85]. The dataset is split into 80%
training, 10% validation, and 10% testing.

All trained models use the DenseNet-169 archi-
tecture [86] for feature extraction, with five dense
layers on top for the classification. The Adam opti-
mizer is used with parameters β1 = 0.9,β2 = 0.999,
with an initial learning rate of 10−4 that decays
by a factor of 0.1 after each 3-epoch plateau for
the validation loss, attaining a minimum of 10−7.
The models are trained in two phases: a 25-epoch
warmup where no fine-tuning occurs, and a 100-
epoch phase where fine-tuning does occur, if any,
with early stopping implemented to stop the train-
ing if the validation loss plateaus for 10 epochs.
Class weights are also added to counter the slight
imbalance in the data classes.

4.2 Datasets

Two datasets are considered in this work: (1)
a general radiology dataset on which RadiNet is
trained and (2) a wrist fracture dataset on which
RadiNetwrist is further fine-tuned. The general radi-
ology dataset is created by augmenting the Stanford

Musculoskeletal Radiographs dataset (MURA) [47]
with the American University of Beirut Medical
Center’s (AUBMC) wrist dataset. The study com-
plied with the tenets of the Declaration of Helsinki
and it was approved by the Institutional Review
Board at the American University of Beirut. The
original MURA dataset consists of instances be-
longing to the following body parts: finger, hand,
wrist, forearm, elbow, humerus, shoulder, split into
a training and a validation set, as described in Ta-
ble 1. The wrist dataset consists of 7,776 records
provided by AUBMC. Each record consists of the
radiologist’s report written in English along with a
set of different wrist XRay images from multiple
views, making up a total of 21,800 images. The
records belong to patients from the ages of less than
1 to 99 years, with a mean age of 36 ± 24 years
(Figure 5) and 29% pediatric cases (under 18 years),
with 43% of the patients being females, 57% being
males.

Figure 5. Patient age distribution

Figure 6. X-Ray exam types
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Figure 4. Automated annotation workflow

Figure 7. Repeat-patient case

The dataset is processed by converting the DI-
COM files to JPEG images, resized to 1324x1324
pixels while maintaining the aspect ratio through
padding. Only two views are considered for each
patient: the frontal and the lateral view, which are
then concatenated horizontally to create one im-
age per clinical case. These views were manu-
ally picked out from the rest of the dataset which
contained multiple exam types resulting in differ-
ent views for each case, varying from single to
multiple-view X-Rays, as shown in Figure 6. It is
interesting to note that around 70% of the cases in
the dataset belong to first-time patients, while 25%
of them are follow-up cases that occurred within a
year of the patient’s previous case as shown in Fig-
ure 10. A small portion of cases (5%) are cases for
previously-seen patients, but occurring on average
3 years after the last case which is likely to be the
outcome of a different injury for the same patient.

Overall, with regard to the target classes, the
data is only slightly skewed, with 56% of the in-
stances representing fractured wrists, and 44% for
non-fractures. Finally, after training iterations and
performance analyses on the various datasets and
their combinations, a clinical case is setup with a

test set of 299 patients who are not present in any of
the other datasets, as described in section 4.9.

Table 1. General radiology dataset instances

MURA Part Training Set Validation Set
Finger 5,106 461
Hand 5,543 460
Wrist 9,748 679

Forearm 1,825 301
Elbow 4,931 465

Humerus 1,272 288
Shoulder 8,379 563

+ AUBMC Wrist 15,220 1,884
Total 52,024 5,101

Figure 8 (top-row) shows a sample of the frontal
and lateral views of wrists with and without frac-
tures. The data in this work is noisy, i.e. it contains
different objects, such as rings or bracelets, that are
not always part of wrist fracture datasets. Some of
the XRays, especially those of newborns, might in-
clude the hand of a parent holding the kid’s hand
(bottom-right corner of Figure 8), which can be in-
tuitive for radiologists to recognize but very mis-
leading for a neural network. The data is also rep-
resentative of real-life cases where patients can be
wearing rings, bracelets, and even casts or splints.
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Figure 8. Dataset samples: (a) no wrist fracture,
(b) wrist fracture, (c) noisy samples.

4.3 Baseline Models

Figure 9. Baseline models

Table 2. Models used in this work

Network Initialization Training
WristNet Random Wrist
RadiNetRand Random Rad.
RadiNetRandwrist RadiNetRand Wrist
ImageNetwrist ImageNet Wrist
RadiNetwrist ImageNet �→ Rad. Wrist

To test the performance of the proposed
progressive transfer learning, we compare
RadiNetwrist against three baseline models (hav-
ing the same architecture as RadiNet), illustrated in
Figure 9 and summarized in Table 2:

– WristNet: trained with random weights initial-
ization, i.e. without any type of transfer learn-
ing.

– RadiNetRandwrist: initialized with the weights
of RadiNetRand, a network trained on radiology
images, then fine-tuned on wrist images. This
model relies on domain-specific pre-training but

transfers the learned feature representations in
one shot. Thus, it tests the importance of trans-
ferring weights gradually by comparing progres-
sive transfer learning to domain-specific induc-
tive transfer learning.

– ImageNetwrist: initialized with ImageNet
weights and fine-tuned on the wrist fracture
data. Since no fine-tuning has been done on
radiology-specific images, this model compares
inductive transfer learning with our proposed
progressive transfer learning.

4.4 RadiNetwrist Performance

Figure 10. Performance of RadiNetwrist and the
baseline models

Figure 10 illustrates the performance of
RadiNetwrist and the three baseline models.
RadiNetwrist, which implements progressive trans-
fer learning, outperforms the baseline models in
terms of accuracy, F1-score, Cohen’s κ measure,
and AUC ROC. Specifically, RadiNetwrist achieves
an accuracy of 87%, an F1-score of 86%, a Co-
hen’s κ measure of 74%, and an AUC ROC of
94%. RadiNetwrist outperforms WristNet by 12%,
13%, 30%, and 12% in the aforementioned met-
rics showing the importance of transfer learn-
ing in improving the classification performance.
Moreover, RadiNetwrist achieves a 7% improve-
ment in accuracy, 9% in F1-score, 19% in κ and
9% in AUC ROC over RadiNetRandwristwhich ap-
plies domain-specific pre-training. Thus, transfer-
ring the knowledge gradually as in RadiNetwrist,
seems to have merits achieving better performances
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within the domain-specific inductive transfer learn-
ing paradigm.

Finally, RadiNetwrist outperforms Ima-
geNetwrist by 5%, 9%, 10% and 2%. Given that
ImageNetwrist transfers knowledge from a general
pre-trained network one, one can conclude the im-
portance of domain-specific transfer learning over
the usual transfer from state-of-the-art pre-trained
networks.

Figure 11. Training loss versus the number of
epochs for RadiNetwrist and the baseline models

Figure 12. Feature maps of RadiNetwrist and the
three baseline models

Figure 11 emphasizes the previous results by
showing that, compared to the three baseline mod-
els, RadiNetwrist’s training starts with and converges
to the least loss. Figure 12 further shows how the

features of RadiNetwrist are different than those of
the three baseline models for different layers (early
and late in the network).

Despite being trained on domain-specific data,
RadiNetRandwrist fails to outperform the Ima-
geNetwrist model, because the ImageNet dataset is
about 20 times bigger than the Radiology dataset,
and there is a trade-off between dataset size and
domain-specificity. RadiNetwrist instead combines
the best of these two approaches to achieve an en-
hanced performance.

4.5 Automated Annotation Results

4.5.1 Automated Annotation Peformance

In this work, the AUBMC wrist dataset used
is partially unlabelled. 7414 records are annotated
as fractures or non-fractures, while 3698 records
do not have corresponding labels. Using the ac-
companying radiology reports, a pipeline for au-
tomated annotation was developed to complete the
annotation of this dataset. The pipeline is trained
and tested on the labelled portion of the dataset,
and is then evaluated on the unlabelled portion of
the dataset, effectively generating labels to be used
for training the image classification network, as de-
picted in Figure 13. The report text was cleaned,
vectorized into token counts, taking into account
unigrams, bigrams, and trigrams, before being fed
to a classifier.

Figure 13. Automated annotation process

Table 3 shows the confusion matrix of the trained
logistic regression classifier with an accuracy of
98.4%, averaged over 5 runs. The false positive
and false negative rates are both low at around
1% which guarantees accurate labeling for training
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images used in RadiNetwrist. The logistic regres-
sion outperformed other models, namely Gradient
Boosting (mean accuracy of 98.0%), Random For-
est (97.6%), and Naı̈ve Bayes (97.0%).

Table 3. Confusion matrix reporting the per-class
accuracies (%) of the automated annotation

Predicted: Predicted:
Fracture No Fracture

Actual: Fracture 679 11
Actual: No Fracture 12 781

4.5.2 Impact on System Performance

An ablation study was performed to study
the contribution of the automated annotation to
the system. For this purpose, we consider the
Wristminimal dataset consisting of the manually la-
beled wrist fracture data where the data annotated
in this work was removed. The ablation study
trains RadiNetwrist and the three baseline models on
Wristminimal. As shown in Table 4, RadiNetwrist per-
forms better than the three baseline models. More-
over, RadiNetwrist when trained on Wristminimal
achieves a 3% lower accuracy and a 4% lower
ROC than the same network trained on the complete
dataset, i.e. with the data provided by the automated
annotation.

4.6 Progressive Transfer Learning Perfor-
mance on Other Radiology Applica-
tions

RadiNet is trained on a large set of XRay im-
ages and is thus able to serve as a pre-trained
network for diverse radiology applications. In
this work, we consider six fracture types, and we
perform the classification by transferring knowl-
edge from RadiNet. Table 4 shows different
metrics reported on the different fracture detec-
tion applications trained using RadiNet as a pre-
trained network. RadiNet pre-training performs
consistently better than training from scratch and
than fine-tuning RadiNetRand and ImageNet net-
works. Specifically, RadiNet pre-training achieves
76.38% accuracy on the shoulder fracture detec-
tion compared to 73.71%, 64.3%, and 66.96% when
ImageNet pre-training, RadiNetRand pre-training,
and no pre-training are performed respectively.
RadiNet pretraining gives better results in almost

all metrics except for the precision on the finger
dataset. However, on the same dataset ImageNet
pre-training has a recall of 31%, which is low com-
pared to 70.44% recall achieved by RadiNet pre-
training. These results show that progressive trans-
fer learning performs better than the inductive and
the domain-specific transfer learning on different
fracture detection types.

4.7 Correlation Analysis

The empirical results show that RadiNetwrist out-
performs ImageNetwriston the wrist fracture detec-
tion task. In what follows, we try to investigate
the hidden representations to explain why progres-
sive transfer learning improves such performance
from an explainability perspective. Motivated by
the interpretability of learned representations, we
study the similarities between the representations
that RadiNetwrist and ImageNetwrist have learned by
analyzing the activation vectors of selected layers
in both networks. For this purpose, we rely on the
Canonical Correlation Analysis (CCA) method pre-
sented in [78] to compare the deep representations
learned in different transfer learning approaches.
CCA is used in the literature to compute the sim-
ilarity between the model’s features and the brain
activity [79], word embeddings in multi-lingual do-
mains [80] and to analyze the representations of
deep models [81].

We consider the layer representation to be its
finite set of responses over a finite set of input in-
stances drawn from the validation dataset. We study
the correlation between the features outputted by
RadiNetwristand ImageNetwrist at 16 different layers
of their architecture and we show the CCA results in
Figure 14. We can see that the correlation between
the early stages of RadiNetwristand the middle stages
of ImageNetwrist are moderately correlated, infer-
ring RadiNetwrist’s ability to extract radiological
features right from the start that are not encountered
with single transfer learning until deeper into the
network. If we examine the correlations between
the features produced at the end of RadiNetwristas
compared to the different stages of ImageNetwrist ,
we observe low values that could hint at the fact that
the progressive transfer learning results in the en-
coding of features that are not encountered during
traditional transfer learning at any stage in the net-
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images used in RadiNetwrist. The logistic regres-
sion outperformed other models, namely Gradient
Boosting (mean accuracy of 98.0%), Random For-
est (97.6%), and Naı̈ve Bayes (97.0%).

Table 3. Confusion matrix reporting the per-class
accuracies (%) of the automated annotation

Predicted: Predicted:
Fracture No Fracture

Actual: Fracture 679 11
Actual: No Fracture 12 781

4.5.2 Impact on System Performance

An ablation study was performed to study
the contribution of the automated annotation to
the system. For this purpose, we consider the
Wristminimal dataset consisting of the manually la-
beled wrist fracture data where the data annotated
in this work was removed. The ablation study
trains RadiNetwrist and the three baseline models on
Wristminimal. As shown in Table 4, RadiNetwrist per-
forms better than the three baseline models. More-
over, RadiNetwrist when trained on Wristminimal
achieves a 3% lower accuracy and a 4% lower
ROC than the same network trained on the complete
dataset, i.e. with the data provided by the automated
annotation.

4.6 Progressive Transfer Learning Perfor-
mance on Other Radiology Applica-
tions

RadiNet is trained on a large set of XRay im-
ages and is thus able to serve as a pre-trained
network for diverse radiology applications. In
this work, we consider six fracture types, and we
perform the classification by transferring knowl-
edge from RadiNet. Table 4 shows different
metrics reported on the different fracture detec-
tion applications trained using RadiNet as a pre-
trained network. RadiNet pre-training performs
consistently better than training from scratch and
than fine-tuning RadiNetRand and ImageNet net-
works. Specifically, RadiNet pre-training achieves
76.38% accuracy on the shoulder fracture detec-
tion compared to 73.71%, 64.3%, and 66.96% when
ImageNet pre-training, RadiNetRand pre-training,
and no pre-training are performed respectively.
RadiNet pretraining gives better results in almost

all metrics except for the precision on the finger
dataset. However, on the same dataset ImageNet
pre-training has a recall of 31%, which is low com-
pared to 70.44% recall achieved by RadiNet pre-
training. These results show that progressive trans-
fer learning performs better than the inductive and
the domain-specific transfer learning on different
fracture detection types.

4.7 Correlation Analysis

The empirical results show that RadiNetwrist out-
performs ImageNetwriston the wrist fracture detec-
tion task. In what follows, we try to investigate
the hidden representations to explain why progres-
sive transfer learning improves such performance
from an explainability perspective. Motivated by
the interpretability of learned representations, we
study the similarities between the representations
that RadiNetwrist and ImageNetwrist have learned by
analyzing the activation vectors of selected layers
in both networks. For this purpose, we rely on the
Canonical Correlation Analysis (CCA) method pre-
sented in [78] to compare the deep representations
learned in different transfer learning approaches.
CCA is used in the literature to compute the sim-
ilarity between the model’s features and the brain
activity [79], word embeddings in multi-lingual do-
mains [80] and to analyze the representations of
deep models [81].

We consider the layer representation to be its
finite set of responses over a finite set of input in-
stances drawn from the validation dataset. We study
the correlation between the features outputted by
RadiNetwristand ImageNetwrist at 16 different layers
of their architecture and we show the CCA results in
Figure 14. We can see that the correlation between
the early stages of RadiNetwristand the middle stages
of ImageNetwrist are moderately correlated, infer-
ring RadiNetwrist’s ability to extract radiological
features right from the start that are not encountered
with single transfer learning until deeper into the
network. If we examine the correlations between
the features produced at the end of RadiNetwristas
compared to the different stages of ImageNetwrist ,
we observe low values that could hint at the fact that
the progressive transfer learning results in the en-
coding of features that are not encountered during
traditional transfer learning at any stage in the net-
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Table 4. Performance of the baseline models and RadiNetwrist on different validation sets with the best
results in each dataset are highlighted in bold

Dataset Pre-training Validation Precision Recall F1-score Cohen’s κ ROC
Accuracy AUC

WristMURA - 82.45 83.44 75.98 79.53 77.12 86.76
RadiNetRand 84.20 85.35 74.86 79.76 77.92 87.21
ImageNet 86.33 85.71 80.45 83.00 81.39 89.65
RadiNet 87.09 87.12 79.33 83.04 81.76 90.79

Finger - 72.40 76.14 67.20 71.39 42.52 75.23
RadiNetRand 72.62 81.67 59.51 68.85 43.19 76.63
ImageNet 71.96 92.77 31.17 46.66 26.98 80.6
RadiNet 75.49 76.60 70.44 73.41 45.39 81.22

Shoulder - 68.92 71.10 55.76 62.50 33.74 71.99
RadiNetRand 67.01 67.74 52.88 59.39 44.48 71.03
ImageNet 75.86 75.19 69.78 72.39 47.37 81.75
RadiNet 79.71 79.84 69.78 74.47 52.67 83.90

Elbow - 68.56 75.34 47.83 58.51 49.51 71.87
RadiNetRand 70.43 73.53 54.35 62.50 52.23 72.88
ImageNet 71.35 75.14 56.52 64.52 55.59 74.77
RadiNet 74.33 79.88 56.96 66.50 60.36 76.92

Figure 14. Feature correlations produced by CCA between the single transfer learning model
(ImageNetwrist in the x-axis) and the progressive model (RadiNetwrist in the y-axis)
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work. The last layers of the RadiNetwristmodel are
not correlated to any other layers, supporting the ar-
gument that suggests it might be learning new fea-
tures not encountered by the ImageNetwrist model.

4.8 Comparison With Literature

Unfortunately, a thorough comparison with re-
sults in the literature relating to wrist fractures is not
entirely possible due to the unavailability of their
datasets (with the exception of the Stanford MURA
dataset). However, we can argue that our results
are comparable with other studies. As previously
reported, [9] obtained an 83% accuracy and a 0.76
Cohen’s kappa in classifying wrist fractures which
is on par with our results, as is Kim and MacKin-
non’s work [8] which achieved an AUC value of
0.954.

Table 5. RadiNetwrist and MURAbaseline accuracies
(%) on MURA validation sets

Finger Elbow Shoulder Wrist
MURAbaseline 38.9 71.0 72.9 93.1
RadiNetwrist 75.5 74.3 79.7 85.2

Authors in [48] reported a 93% accuracy in de-
tecting wrist fractures, but their work only focuses
on the fractures of the distal radius area and relies
on Faster-RCNN [45] to extract the ROI. We are
aware that an accuracy reading is not sufficient for a
fair qualitative assessment because it doesn’t reflect
the model specificity and sensitivity. However, we
do not have access to the models and datasets which
makes the assessment of the model’s misses hard.
Consequently, a dissection of the model’s false pre-
dictions is not feasible to assess whether they are,
clinically, on the easy or difficult level.

Lastly, compared to the work the MURA
dataset in [47], we can see our model improves on
their baseline model’s accuracy for abnormality in
the finger, elbow, and shoulder, but not for the wrist,
as seen in Table 5. It is important to note that [47]
used ensembling to boost performance, and a dif-
ferent testing scheme whereby the final prediction
for a patient is an aggregate of the predictions on
multiple images for that same patient.

4.9 Clinical Case

To evaluate how well RadiNetwrist generalizes to
unseen data, we test its performance on 299 patients
that were not included in the training or validation
sets. 10% of the images were of low-resolution
whereas only 3% of the training dataset consists of
low resolution images.

Each patient is represented by two XRay im-
ages: one for the frontal view of the wrist and
another one for the lateral view. The predictions
of RadiNetwrist when trained on the Wristminimal
dataset, i.e. without the data produced by the au-
tomated labeling, and on the complete wrist dataset
are compared against the ground truth labels and
the accuracy, precision, and recall (sensitivity) are
reported in Table 6. Two expert radiologists were
asked to predict wrist fractures from the frontal
views and the lateral views separately. Two rules
are later applied to the separate results to predict
a fracture in the wrist from both views. The con-
junction rule predicts a wrist fracture if the radi-
ologist labels both views as fracture and the dis-
junction rule predicts fracture if the radiologist la-
bels at least one view as a fracture. Table 6 shows
that disjunction gives better results in terms of ac-
curacy and recall but lower results in terms of preci-
sion. Moreover, RadiNetwrist achieves an accuracy
of 83.61% which is slightly higher than the aver-
age radiologist accuracy (83.28%) when the con-
junction is applied and lower than the average ra-
diologist accuracy when a disjunction is applied by
3.68%. Notably, RadiNetwrist’s performance sig-
nificantly decreased when the automated annota-
tion data is not used for training. This shows
that increasing the dataset size by automating the
annotation process provides better generalization
guarantees for RadiNetwristand this can be clearly
seen through the poor performance metrics under
Wristminimal, as shown in Table 6. Table 6 also
shows that RadiNetwrist generally outperforms our
baseline models in terms of accuracy, precision and
recall. Only ImageNetwrist’s precision was shown
to be higher than that of RadiNetwrist by 0.73%
while the overall accuracy and recall are higher with
RadiNetwrist.

However, to explain these results, it is neces-
sary to examine the misclassified cases, for both the
model and the radiologist. The radiologists have re-
assessed the difficulty of these misclassified cases
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work. The last layers of the RadiNetwristmodel are
not correlated to any other layers, supporting the ar-
gument that suggests it might be learning new fea-
tures not encountered by the ImageNetwrist model.

4.8 Comparison With Literature

Unfortunately, a thorough comparison with re-
sults in the literature relating to wrist fractures is not
entirely possible due to the unavailability of their
datasets (with the exception of the Stanford MURA
dataset). However, we can argue that our results
are comparable with other studies. As previously
reported, [9] obtained an 83% accuracy and a 0.76
Cohen’s kappa in classifying wrist fractures which
is on par with our results, as is Kim and MacKin-
non’s work [8] which achieved an AUC value of
0.954.

Table 5. RadiNetwrist and MURAbaseline accuracies
(%) on MURA validation sets

Finger Elbow Shoulder Wrist
MURAbaseline 38.9 71.0 72.9 93.1
RadiNetwrist 75.5 74.3 79.7 85.2

Authors in [48] reported a 93% accuracy in de-
tecting wrist fractures, but their work only focuses
on the fractures of the distal radius area and relies
on Faster-RCNN [45] to extract the ROI. We are
aware that an accuracy reading is not sufficient for a
fair qualitative assessment because it doesn’t reflect
the model specificity and sensitivity. However, we
do not have access to the models and datasets which
makes the assessment of the model’s misses hard.
Consequently, a dissection of the model’s false pre-
dictions is not feasible to assess whether they are,
clinically, on the easy or difficult level.

Lastly, compared to the work the MURA
dataset in [47], we can see our model improves on
their baseline model’s accuracy for abnormality in
the finger, elbow, and shoulder, but not for the wrist,
as seen in Table 5. It is important to note that [47]
used ensembling to boost performance, and a dif-
ferent testing scheme whereby the final prediction
for a patient is an aggregate of the predictions on
multiple images for that same patient.

4.9 Clinical Case

To evaluate how well RadiNetwrist generalizes to
unseen data, we test its performance on 299 patients
that were not included in the training or validation
sets. 10% of the images were of low-resolution
whereas only 3% of the training dataset consists of
low resolution images.

Each patient is represented by two XRay im-
ages: one for the frontal view of the wrist and
another one for the lateral view. The predictions
of RadiNetwrist when trained on the Wristminimal
dataset, i.e. without the data produced by the au-
tomated labeling, and on the complete wrist dataset
are compared against the ground truth labels and
the accuracy, precision, and recall (sensitivity) are
reported in Table 6. Two expert radiologists were
asked to predict wrist fractures from the frontal
views and the lateral views separately. Two rules
are later applied to the separate results to predict
a fracture in the wrist from both views. The con-
junction rule predicts a wrist fracture if the radi-
ologist labels both views as fracture and the dis-
junction rule predicts fracture if the radiologist la-
bels at least one view as a fracture. Table 6 shows
that disjunction gives better results in terms of ac-
curacy and recall but lower results in terms of preci-
sion. Moreover, RadiNetwrist achieves an accuracy
of 83.61% which is slightly higher than the aver-
age radiologist accuracy (83.28%) when the con-
junction is applied and lower than the average ra-
diologist accuracy when a disjunction is applied by
3.68%. Notably, RadiNetwrist’s performance sig-
nificantly decreased when the automated annota-
tion data is not used for training. This shows
that increasing the dataset size by automating the
annotation process provides better generalization
guarantees for RadiNetwristand this can be clearly
seen through the poor performance metrics under
Wristminimal, as shown in Table 6. Table 6 also
shows that RadiNetwrist generally outperforms our
baseline models in terms of accuracy, precision and
recall. Only ImageNetwrist’s precision was shown
to be higher than that of RadiNetwrist by 0.73%
while the overall accuracy and recall are higher with
RadiNetwrist.

However, to explain these results, it is neces-
sary to examine the misclassified cases, for both the
model and the radiologist. The radiologists have re-
assessed the difficulty of these misclassified cases
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Table 6. Results of the clinical case: performance of RadiNetwrist when trained with and without the data of
the automated labeling versus the performance of two expert radiologists.

Radiologist A Radiologist B Average Radiologist RadiNetwrist ImageNetwrist RadiNetRandwrist WristNet

Conjunction Disjunction Conjunction Disjunction Conjunction Disjunction Average Wristminimal Wrist
Accuracy 81.94 85.62 84.62 88.96 83.28 87.29 85.29 66.56 83.61 79.93 74.91 71.24
Precision 87.88 84.27 88.16 84.47 88.02 84.37 86.20 56.25 81.00 81.73 72.11 73.01
Recall 55.77 72.12 64.42 83.65 60.09 77.88 68.99 17.31 71.96 67.46 61.98 56.72

on a simple binary-scale, easy or difficult. This as-
sessment is of course biased and based on the re-
viewer’s clinical experience. We thus define a bi-
nary difficulty score of di for each case. Conse-
quently, for each “agent” participating in the study
(model or radiologist), we can calculate an average
difficulty score for the N misclassified cases by that
agent as follows:

Dagent =
1
N

n

∑
i=1

di =
d1 +d2 + · · ·+dn

N

Then, we construct the Venn diagram that
shows the overlap of incorrectly-classified cases be-
tween the different agents, along with their corre-
sponding average difficulty score Dagent , and the ra-
tio Ragent of misclassified cases by the agent to the
total number of misclassified cases in Figure 15.
The diagram shows that the model failed to cor-
rectly classify cases that were mostly easily judged
by the radiologists. We refer to an easy case one that
usually translates into an obvious fracture present
in the XRay. Given the variation in X-Ray quality
- lower than average resolution, that was present in
the training images and the limited data the model
had access to as compared to the radiologists’ ex-
periences both in the number of years and quantity
of studied XRays, these failures point out the per-
formance shortcomings of the model which could
be improved by more training on more data or us-
ing different networks. More importantly, this high-
lights the ever-growing need for more explainable
AI that is very important in healthcare applications
given the consequences and impacts of AI decision
on human lives.

Figure 15. Misclassification Venn diagram

5 Conclusion

In this work, we proposed a progressive and
cross domain transfer learning approach for wrist
fracture detection application by transferring gen-
eral features learned from ImageNet to learn more
specific features from a related radiology dataset in
Radinet before fine-tuning the specialized features
on the target wrist dataset in RadiNetwrist. This step-
wise approach was able to provide an increase in
the performance of the model over regular induc-
tive transfer learning methods, allowing us to de-
tect wrist fractures in radiographs with an accuracy
of 87% and AUC ROC of 94% (Figure 10). Fur-
thermore, Radinet, when used as a pre-trained net-
work for radiology applications, was shown to out-
perform state-of-the-art pre-training by 4% in accu-
racy. This novel transfer learning method was also
combined with NLP techniques to automate the an-
notation and increase the dataset size for an added
improvement in accuracy and generalization.
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This improvement is studied within the explain-
able AI framework to leverage the mistrust of the
medical field in AI applications. The correlation
analysis shows that the better performance of pro-
gressive transfer learning can be explained by its
ability to learn domain-specific features in its early
layers, i.e. faster than the traditional approaches
that learn such features in their last layers, while
distinctly extracting new features in its deepest lay-
ers.

Radinet could be also used as a domain-specific
network for further fine-tuning other radiology ap-
plications, thus offering an increase in performance
compared to regular transfer learning from Ima-
geNet. A clinical case study showed that our
model’s performance is close to that of the radiol-
ogist, whose reading can be affected by subjectiv-
ity and human fatigue. Conducting a larger clinical
study can help obtain a more accurate comparison
between the deep learning model and radiologists
with different backgrounds and different experience
levels.

Future work can focus on the classification of
displaced fractures, the localization of fractures,
and the automation of report generation.
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