PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimisation Of Process Parameters In High Energy Mixing As A Method Of Cohesive Powder Flowability Improvement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flowability of fine, highly cohesive calcium carbonate powder was improved using high energy mixing (dry coating) method consisting in coating of CaCO3 particles with a small amount of Aerosil nanoparticles in a planetary ball mill. As measures of flowability theangle of repose and compressibility index were used. As process variables the mixing speed, mixing time, and the amount of Aerosil and amount of isopropanol were chosen. To obtain optimal values of the process variables, a Response Surface Methodology (RSM) based on Central Composite Rotatable Design (CCRD) was applied. To match the RSM requirements it was necessary to perform a total of 31 experimental tests needed to complete mathematical model equations. The equations that are second-order response functions representing the angle of repose and compressibility index wereexpressed as functions of all the process variables. Predicted values of the responses were found to be in a g ood agreement with experimental values. The models were presented as 3-D response surface plots from which the optimal values of the process variables could be correctly assigned. The proposed, mechanochemical method of powder treatment coupled with response surface methodology is a new, effective approach to flowability of cohesive powder improvement and powder processing optimisation.
Rocznik
Strony
449--460
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
autor
  • Rzeszow University of Technology, Department of Chemical and Process Engineering, Powstańców Warszawy 6, 35-959 Rzeszow, Poland
autor
  • Rzeszow University of Technology, Department of Chemical and Process Engineering, Powstańców Warszawy 6, 35-959 Rzeszow, Poland
  • Rzeszow University of Technology, Department of Chemical and Process Engineering, Powstańców Warszawy 6, 35-959 Rzeszow, Poland
Bibliografia
  • 1. Alonso M., Alguacil F.J., 1999. Dry mixing and coating of powders. Revista de Metalurgia, 35, 315–328. DOI: 10.3989/revmetalm.1999.v35.i5.640.
  • 2. Aslan N., 2008. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration. Powder Technol., 185, 80–86. DOI: 10.1016./j.powtec.2007.10.002.
  • 3. Balaz P., 2008. Mechanochemistry in nanoscience and minerals engineering. 1st edition. Springer-Verlag, Berlin, Heidelberg, 126–129.
  • 4. Bezzera M.A., Santelli R.E., Oliveira E.P., Villar L. S., Escaleira L.A., 2008. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  • 5. Burmeister C.F., Kwade A., 2013. Process engineering with planetary ball mills. Chem. Soc. Rev., 42, 7660–7667. DOI: 10.1039/c3cs35455e.
  • 6. Dora D.T.K., Mohanty Y.K., Roy G.K. 2013. Hydrodynamics of three-phase fluidization of a homogeneous ternary mixture of regular particles. Experimental and statistical analysis. Powder Technol., 237, 594–601. DOI: 10.1016/j.powtec.2012.12.056.
  • 7. Gluba T., 2012. Granulacja bębnowa surowców drobnoziarnistych o różnych składach ziarnowych. Zeszyty Naukowe Politechnika Łódzka. Rozprawy Naukowe, 423, 3–206.
  • 8. Jallo L.J., Ghoroi C., Gurumurthy L., Patel U., Dave R.N., 2012. Improvement of flow and bulk density of pharmaceutical powders using surface modification. Int. J. Pharm., 423, 213–225. DOI: 10.1016/j.ijpharm.2011.12.012.
  • 9. Jeong S.-B., Yang Y.-Ch., Chae Y.-B., Kim B.-G., 2009. Characteristics of the treated ground calcium carbonate powder with stearic acid using the dry process coating system. Mater. Trans., 50, 409–414. DOI: 10.2320/matertrans.MRP2008351.
  • 10. Jürgen T., Kleinschmidt S., 2009. Improvement of flowability of fine cohesive powders by flow additives, Chem. Eng. Technol., 32, 1470–1483. DOI: 10.1002/ceat.200900173.
  • 11. Myers R.H., Montgomery D.C., Anderson-Cook C.M., 2009. Response surface methodology – Process and product optimization using design experiment. 3rd edition. John Wiley & Sons, Inc., Hoboken, New Jersey, 530–554.
  • 12. Mullarney M.P., Beach L.E., Dave R.N., Langdon B.A., Polizzi M., Blackwood D.O., 2011. Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density. Powder Technol., 212, 397–402. DOI: 10.1016/j.powtec.2011.06.008.
  • 13. Ouabbas Y., Dodds J., Galet L., Chamayou A., Baron M., 2009. Particle-particle coating in a cyclomix impact mixer. Powder Technol., 189, 245–252. DOI: 10.1016/j.powtec.2008.04.031.
  • 14. Pfeffer R., Dave R.N., Wei D., Ramlakhan M., 2001. Synthesis of engineered particulates withtailored properties using dry particle coating. Powder Technol., 117, 40–67. DOI: 10.1016/S0032-5910(01)00314-X.
  • 15. Polański Z., 1984. Planowanie doświadczeń w technice. PWN, Warszawa, 144–158.
  • 16. Saharan V.A., Kukkar V., Kataria M., Kharb V., Choudhury P.K., 2008. Ordered mixing: mechanism, process and applications in pharmaceutical formulations. Asian J. Pharm. Sci., 3, 240–259.
  • 17. Santomaso A., Lazzaro P., Canu P., 2003. Powder fowability and density ratios: The impact of granules packing. Chem. Eng. Sci., 58, 2857–2874. DOI: 10.1016/S0009-2509(03)00137-4.
  • 18. Schulze D., 2008. Powders and bulk solids – Behavior, characterization, storage and flow. 1st edition, Springer-Verlag, Berlin, Heidelberg, 35–74.
  • 19. Sonoda R., Horibe M., Oshima T., Iwasaki T., Watano S., 2008. Improvement of dissolution property of poorly water-soluble drug by novel dry coating method using planetary ball mill. Chem. Pharm. Bull., 56, 1243–1247.
  • 20. Suryanarayana C., 2001. Mechanical alloying and milling. Prog. Mater. Sci., 46, 15–29. DOI: 10.1016/S0079-6425(99)00010-9.
  • 21. Tay T., Morton D.V.A., Gengenbach T.R., Stewart P.J., 2012. Dissolution of a poorly water-soluble drug dry coated with magnesium and sodium stearate. Eur. J. Pharm. Biopharm., 80, 443–452. DOI: 10.1016/j.ejpb.2011.10.009.
  • 22. Yang J., Silva A., Banerjee A., Dave R.N., Pfeffer R., 2005. Dry particle coating for improving the flowability of cohesive powders. Powder Technol., 158, 21–33. DOI: 10.1016/j.powtec.2005.04.032.
  • 23. Zhang D.L., Liang J., Wu J., 2004. Processing Ti3Al–SiC nanocomposites using high energy mechanical milling. Mater. Sci. Eng., A, 375–377, 911–916. DOI: 10.1016/j.msea.2003.10.231.
  • 24. Zhang X., Huiren H., 2014. Synthesis and application of a polyacrylate dispersant on the preparation of ultrafine ground calcium carbonate in a laboratory stirred media mill. Powder Technol., 266, 218–227. DOI: 10.1016/j.powtec.2014.06.037.
  • 25. Zhou Q., Armstrong B., Larson I., Stewart P.J., Morton D.A.V., 2010. Improving powder flow properties of a cohesive lactose monohydrate powder by intensive mechanical dry coating. J. Pharm. Sci., 99, 969–981. DOI: 10.1002/jps.21885.
  • 26. Zhou Q., Qu L., Larson I., Stewart P.J., Morton D. A.V., 2011. Effect of mechanical dry particle coating on the improvement of powder flowability for lactose monohydrate: A model cohesive pharmaceutical powder. Powder Technol., 207, 414–421. DOI: 10.1016/j.powtec.2010.11.028.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd18f499-df93-48f5-910f-6f2ab06e603d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.