Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this work is to investigate the impact of geometry on the mechanical stability of characteristic structural solutions of plates for internal bone fixation using the finite element method (FEM). Based on the realistic construction of plates for internal bone fixation, 3D geometric and FEM models were formed, and then structural analysis was carried out in the CAD/CAE system CATIA V5. Five different types of plates for internal bone fixation were tested under two types of loads: axial pressure and torque in the case of application to the femur. During the structural analysis, stresses and displacements were monitored at characteristic points of the structure. The most attention was paid to the relative displacements of the bone model fragments, because the stiffness of the plates for the internal fixation of the bone was determined based on them. At the end of the paper, the results of all analyzed plates are presented, their mutual comparison as well as the conclusion in which, based on everything done, it was stated which plate would be the most favorable solution for a given case of bone fracture.
Wydawca
Rocznik
Tom
Strony
262--270
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
autor
- Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, Sarajevo, Bosnia and Herzegovina
autor
- Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, Sarajevo, Bosnia and Herzegovina
autor
- Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, Sarajevo, Bosnia and Herzegovina
autor
- Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, Sarajevo, Bosnia and Herzegovina
autor
- Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, Sarajevo, Bosnia and Herzegovina
Bibliografia
- 1. Zhang, S., Patel, D., Brady, M., et al. Experimental testing of fracture fixation plates: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2022; 236(9): 1253–1272.
- 2. Pater, T.J., Grindel, S.I., Schmeling, G.J., Wang, M. Stability of unicortical locked fixation versus bicortical non-locked fixation for forearm fractures, Bone Research. 2014; 2: 1–5.
- 3. Nourisa, J., Rouhi, G. Biomechanical evaluation of intramedullary nail and bone plate for the fixation of distal metaphyseal fractures. Journal of the Mechanical Behavior of Biomedical Materials. 2016; 56: 34-44.
- 4. Richard, R.D., Kubiak, E., Horwitz, D.S. Techniques for the surgical treatment of distal tibia fractures. Orthopedic Clinics of North America. 2014; 45(3): 295–312.
- 5. Gupta, R.K., Rohilla, R.K., Sangwan, K. et al. Locking plate fixation in distal metaphyseal tibial fractures: series of 79 patients. International Orthopaedics. 2010; 34: 1285–1290.
- 6. Wani, I.H., Ul Gani, N., Yaseen, M., Bashir, A., Bhat, M. S., Farooq, M. Operative management of distal tibial extra-articular fractures – intramedullary nail versus minimally invasive percutaneous plate osteosynthesis. Ortopedia, Traumatologia, Rehabilitacja. 2017; 19(6): 537–541.
- 7. Uhthoff, H.K., Poitras, P., Backman, D.S. Internal plate fixation of fractures: short history and recent developments, Journal of Orthopaedic Science. 2006; 11(2): 118–126.
- 8. Perren, S.M. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: choosing a new balance between stability and biology, The Journal of bone and joint surgery. British volume. 2002; 84(8): 1093–1110.
- 9. Li, J., Qin, L., Yang, K. et al. Materials evolution of bone plates for internal fixation of bone fractures: A review, Journal of Materials Science & Technology. 2020; 36: 190–208.
- 10. Perren, S.M., Cordey, J., Rahn, B.A., Gautier, E., Schneider, E. Early temporary porosis of bone induced by internal fixation implants. A reaction to necrosis, not to stress protection? Clinical Orthopaedics and Related Research. 1988; 232: 139–151.
- 11. Field, J.R., Hearn, T.C, Caldwell, B.C. Bone plate fixation: an evaluation of interface contact area and force of the dynamic compression plate (DCP) and the limited contact-dynamic compression plate (LC- DCP) applied to cadaveric bone. Journal of Orthopaedic Trauma, 1997; 11(5): 368–373.
- 12. Jain, R., Podworny, N., Hupel, T.M., Weinberg, J., Schemitsch, E.H. Influence of plate design on cortical bone perfusion and fracture healing in canine segmental tibial fractures. Journal of Orthopaedic Trauma. 1999; 13(3): 178–186.
- 13. Tepic, S., Remiger, A.R., Morikawa, K., Predieri, M., Perren, S.M. Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up, Journal of Orthopaedic Trauma. 1997; 11(1): 14–23.
- 14. Haas, N., Hauke, C., Schütz, M., Kääb, M., Perren, S. M. Treatment of diaphyseal fractures of the forearm using the Point Contact Fixator (PC-Fix): results of 387 fractures of a prospective multicentric study (PC-Fix II), Injury. 2001; 32(2): B51–B62.
- 15. Gardner, M.J., Brophy, R.H., Campbell, D., Mahajan, A., Wright, T.M., Helfet, D.L., Lorich, D.G. The mechanical behavior of locking compression plates compared with dynamic compres-sion plates in a cadaver radius model, Journal of Orthopaedic Trauma. 2005; 19(9): 597–603.
- 16. Mesic, E., Pervan, N., Repcic, N., Muminovic, A. Research of Influential Constructional Parameters on the Stability of the Fixator Sarafix. In: Annals of DAAAM for 2012 & Proceedings of the 23 rd International DAAAM Symposium, Vienna, Austria. 2012; 561–564.
- 17. Pervan, N., Mešić, E., Muminović, A.J., Delić, M., Muratović, E., Trobradović, M., Hadžiabdić, V. Biomechanical performance analysis of the monolateral external fixation devices with steel and composite material frames under the impact of axial load. Applied Sciences. 2022; 12(2): 722.
- 18. Pervan, N., Muminović, A.J., Mešić, E., Delić, M., Muratović, E. Analysis of mechanical stability for external fixation device in the case of anterior-posterior bending. Advances in Science and Technology Research Journal. 2022; 16(3): 136–142.
- 19. Rana, I.A., Sadiq, J.A., Walead A.A. Mechanical analysis of bone-plate construct regarding strength and Stiffness. Al-Nahrain Journal for Engineering Sciences. 2020; 23: 89–93.
- 20. Xiong, Y., Zhao, Y., Wang, Z., Du, Q., Chen, W., Wang, A. Comparison of a new minimum contact locking plate and the limited contact dynamic compression plate in an osteoporotic fracture model. International Orthopaedics. 2009; 33(5): 1415–1419.
- 21. Pervan N., Mesic E., Colic M. Stress analysis of external fixator based on stainless steel and composite material. International Journal of Mechanical Engineering & Technology. 2017; 8(1): 189–199.
- 22. Mešić E., Avdić V., Pervan N., Repčić N. Finite Element Analysis and Experimental Testing of Stiffness of the Sarafix External Fixator. Procedia Engineering. 2015; 100: 1598–1607.
- 23. Pervan, N., Mesic, E., Colic, M., Avdic, V. Stiffness analysis of the sarafix external fixator based on stainless steel and composite materials. TEM Journal. 2015; 4: 366–372.
- 24. Pervan, N., Muminović, A.J., Mešić, E., Muratović, E. Delić, M. Analysis of the mechanical behaviour for the external fixation device under the impact of torque, Tehnički Glasnik. 2023; 17(1): 20–25.
- 25. Pervan, N., Mešić, E., Muminović, A.J., Delić, M., Muratović, E. Stiffness analysis of the external fixation system at axial pressure load. Advances in Science and Technology Research Journal. 2022; 16(3): 226–233.
- 26. Mešić, E., Muminović, A., Čolić, M., Petrović, M. Pervan, N. Development and experimental verification of a generative CAD/FEM model of an external fixation device. Tehnički Glasnik. 2020; 14(1): 1-6.
- 27. Mesic, E., Avdic, V., Pervan, N. Numerical and experimental stress analysis of an external fixation system. Folia Medica Facultatis Medicinae Universitatis Saraeviensis. 2015; 50(1): 52–58.
- 28. Mesic, E., Avdic, V., Pervan, N., Muminovic, A. A new proposal on analysis of the interfragmentary displacements in the fracture gap. TEM Journal. 2015; 4(3): 270–275.
- 29. Mešić, E., Muminović, A., Čolić, M., Petrović, M., Pervan, N. Structural size optimization of an external fixation device. Advances in Science and Technology Research Journal. 2020; 14(2): 233–240.
- 30. Oh, J.-K., Sahu, D., Ahn, Y.-H., Lee, S.-J., Tsutsumi, S., Hwang, J.-H., Jung, D.-Y., Perren, S.M. and Oh, C.-W. Effect of fracture gap on stability of compression plate fixation: A finite element study. Journal of Orthopedic Research. 2010; 28: 462–467.
- 31. Sanders, R., Haidukewych, G. J., Milne, T., Dennis, J., Latta, L. L. Minimal versus maximal plate fixation techniques of the ulna: the biomechanical effect of number of screws and plate length. Journal of Orthopaedic Trauma, 2002; 16(3): 166–171.
- 32. Stoffel, K., Stachowiak, G., Forster, T., Gächter, A., Kuster, M. Oblique screws at the plate ends increase the fixation strength in synthetic bone test medium. Journal of Orthopaedic Trauma. 2004; 18(9): 611–616
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd11b87e-d571-4f7c-b60b-3b6ad8ca51c1