Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper results of single- and double-pulse LIBS (Laser-Induced Breakdown Spectroscopy) measurements in collinear geometry are described. The experiments were performed using a unique self-made Nd:YAG laser operating in the Q-switching regime, where the laser transmission losses are switched. Such a laser allowed for an easy and quick change of the operating mode (one and two pulses), free shaping of the energy ratio of the two pulses (division of the energy of a single pulse into two parts) and a smooth change of the delay time between pulses in the range from 200 ns to 10 μs. To our knowledge, such a laser was used in LIBS measurements for the first time. LIBS experiments revealed strong self-absorption depending on energy ratios carried out in the first and second laser pulse in the double-pulse mode. This was confirmed also by statistical factorial analysis of LIBS spectra. Plasma temperature and LIBS signal enhancement were measured both for energy proportions between the first and the second laser pulse and for the first-to-second-pulse delay.
Czasopismo
Rocznik
Tom
Strony
273--287
Opis fizyczny
Bibliogr. 55 poz., rys., wykr.
Twórcy
autor
- Military University of Technology, Institute of Optoelectronics, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw 46, Poland
autor
- Military University of Technology, Institute of Optoelectronics, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw 46, Poland
autor
- Military University of Technology, Institute of Optoelectronics, ul. gen. Sylwestra Kaliskiego 2, 00-908 Warsaw 46, Poland
Bibliografia
- [1] Debras-Guédon, J., & Liodec, N. (1963). De l’utilisation du faisceau d’un amplificateur a ondes lumineuses par émission induite de rayonnement (laser à rubis), comme source énergétique pour l’excitation des spectres d’émission des éléments. Comptes rendus de l’Academie des Sciences, 257, 3336-3339.
- [2] Adrain, R. S., & Watson, J. (1984). Laser microspectral analysis: a review of principles and applications. Journal of Physics D: Applied Physics, 17(10), 1915. https://doi.org/10.1088/0022-3727/17/10/004
- [3] Radziemski L. J. (1994). Review of selected analytical applications of laser plasmas and laser ablation. Microchemical Journal, 50(3), 218-234. https://doi.org/10.1006/mchj.1994.1090
- [4] Lee Y. I., Song K., & Sneddon J. (1997). Laser induced plasmas for analytical atomic spectroscopy. In J. Sneddon, T. L. Thiem, & Y. I. Lee (Eds.), Lasers in Analytical Atomic Spectroscopy, Wiley-VCH.
- [5] Rusak, D. A., Castle, B. C., Smith, B. W., & Winefordner, J. D. (1997). Fundamentals and applications of laser-induced breakdown spectroscopy. Critical Reviews in Analytical Chemistry, 27(4), 257-290. https://doi.org/10.1080/10408349708050587
- [6] Miziolek, A., Palleschi, V., & Schechter, I. (2006). Laser-Induced Breakdown Spectroscopy (LIBS). Fundamentals and Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511541261
- [7] Noll, R., (2012). Laser-Induced Breakdown Spectroscopy. Fundamentals and Applications (2nd ed.). Springer-Verlag Berlin Heidelberg GmbH & Co.KG. https://doi.org/10.1007/978-3-642-20668-9
- [8] Hahn, D. W., & Omenetto, N. (2012). Laser-induced breakdown spectroscopy (LIBS), Part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Applied Spectroscopy, 66, 347-419. https://doi.org/10.1366/11-06574
- [9] Cremers, D. A., & Radziemski, L. J. (2013). Handbook of Laser-Induced Breakdown Spectroscopy, Wiley & Sons. https://doi.org/10.1002/9781118567371
- [10] Musazzi, S., & Perini, U. (2014). Laser-induced breakdown spectroscopy. Theory and application. Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45085-3
- [11] Piepmeier, E. H. & Malmstadt, H. V. (1969). Q-Switched Laser Energy Absorption in the Plume of an Aluminum Alloy. Analytical Chemistry, 41, 700-707. https://doi.org/10.1021/ac60275a014
- [12] Cristoforetti, G., & Palleschi, V. (2011). Double-pulse laser ablation of solid targets in ambient gas: mechanisms and effects. In Black S. E. (Eds.), Laser Ablation: Effects and Applications. Nova Science Publishers.
- [13] Pender, J., Pearman, B., Scaffidi, J., Goode, S. R. & Angel, S. M. (2006). Laser-induced break-down spectroscopy using sequential laser pulses. In A. W. Miziolek, V. Palleschi & I. Schechter (Eds.), Laser-induced Breakdown Spectroscopy: Fundamentals and Applications. Cambridge University Press. https://doi.org/10.1017/CBO9780511541261
- [14] Babushok, V. I., De Lucia, F. C. Jr., Gottfried, J. L., Munson, C. A. & Miziolek, A. W. (2006). Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement. Spectrochimica Acta, Part B: Atomic Spectroscopy, 61, 999-1014. https://doi.org/10.1016/j.sab.2006.09.003
- [15] Scaffidi, J., Angel, S. M. & Cremers, D. A. (2006). Emission enhancement mechanisms in dual-pulse LIBS. Analytical Chemistry, 78, 24-32. https://doi.org/10.1021/ac069342z
- [16] De Giacomo, A., Dell’Aglio, M., De Pascale, O., & Capitelli, M. (2007). From single pulse to double pulse ns-Laser Induced Breakdown Spectroscopy under water: Elemental analysis of aqueous solutions and submerged solid samples. Spectrochimica Acta, Part B: Atomic Spectroscopy, 62, 721-738. https://doi.org/10.1016/j.sab.2007.06.008
- [17] Tognoni, E., & Cristoforetti, G. (2014). Basic mechanisms of signal enhancement in ns double-pulse laser-induced breakdown spectroscopy in a gas environment. Journal of Analytical Atomic Spectrometry, 29, 1318-1338. https://doi.org/10.1039/c4ja00033a
- [18] Stratis, D. N., Eland, K. L., & Angel, S. M. (2000). Dual-pulse LIBS using a pre-ablation spark for enhanced ablation and emission. Applied Spectroscopy, 54, 1270-1274. https://doi.org/10.1366/0003702001951174
- [19] Gautier, C., Fichet, P., Menut, D., Lacour, J. L., L’Hermite, D., & Dubessy, J. (2005). Quantification of the intensity enhancements for the double-pulse laser-induced breakdown spectroscopy in the orthogonal beam geometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 265-276. https://doi.org/10.1016/j.sab.2005.01.006
- [20] Uebbing, J., Brust, J., Sdorra, W., Leis, F., & Niemax, K. (1991). Reheating of a laser-produced plasma in double-pulse mode. Applied Spectroscopy, 45, 1419-1423. https://doi.org/10.1366/0003702914335445
- [21] Gautier, C., Fichet, P., Menut, D., Lacour, J. L., L’Hermite, D., & Dubessy, J. (2004). Study of the double-pulse setup with an orthogonal beam geometry for laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 975-986. https://doi.org/10.1016/j.sab.2004.05.002
- [22] Guo, L. B., Zhang, B. Y., He, X. N., Li, C. M., Zhou, Y. S., Wu, T., Park, J. B., Zeng, X. Y., & Lu, Y. F. (2012). Optimally enhanced optical emission in laser-induced breakdown spectroscopy by combining spatial confinement and dual-pulse irradiation. Optics Express, 20, 1436-1443. https://doi.org/10.1364/OE.20.001436
- [23] St-Onge, L., Sabsabi, M., & Cielo, P. (1998). Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode. Spectrochimica Acta Part B: Atomic Spectroscopy, 53, 407-415. https://doi.org/10.1016/S0584-8547(98)00080-9
- [24] Gautier, C., Fichet, P., Menut, D., Lacour, J. L., L’Hermite, D., & Dubessy, J. (2005). Main parameters influencing the double-pulse laser-induced breakdown spectroscopy in the collinear beam geometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 792-804. https://doi.org/10.1016/j.sab.2005.05.006
- [25] Gautier, C., Fichet, P., Menut, D., & Dubessy, J. (2006). Applications of the double-pulse laser-induced breakdown spectroscopy (LIBS) in the collinear beam geometry to the elemental analysis of different materials. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 210-219. https://doi.org/10.1016/j.sab.2006.01.005
- [26] Pal, A., Waterbury, R. D., Dottery, E. L., & Killinger, D. K. (2009). Enhanced temperature and emission from standoff 266 nm laser initiated LIBS plasma using simultaneous 10.6 μm CO2 laser pulse. Optics Express, 17, 8856-8870. https://doi.org/10.1364/OE.17.008856
- [27] Mao, X., Zeng, X., Wen, S. B., & Russo, R. E. (2005). Time resolved plasma properties for double-pulse laser-induced breakdown spectroscopy of silicon. Spectrochimica Acta Part B: Atomic Spectroscopy, 60(7-8), 960-967. https://doi.org/10.1016/j.sab.2005.06.012
- [28] Scaffidi, J., Pender, J., Pearman, W., Good, S. R., Colston, B. W., Carter, J. C., & Angel, S. M. (2003). Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses. Applied Optics, 42, 30, 6099-6106. https://doi.org/10.1364/AO.42.006099
- [29] Favre, A., Morel, V., Bultel, A., Godard, G., Idlahcen, S., & Grisolia, C. (2021). Absorption of a nanosecond laser pulse by a picosecond laser-induced preformed aluminum plasma. Spectrochimica Acta Part B: Atomic Spectroscopy, 175, 1-11. https://doi.org/10.1016/j.sab.2020.106011
- [30] Stavropoulos, P., Palagas, C., Angelopoulos, G. N, Papamantellos, D. N., & Couris S. (2004). Calibration measurements in laser-induced breakdown spectroscopy using nanosecond and picosecond lasers. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 1885-1892, https://doi.org/10.1016/j.sab.2004.08.005
- [31] Skórczakowski, M., Żendzian, W., & Jankiewicz, Z. (2020). Generation of two identical ns laser pulses at single μs spacing by switching output mirror transmission. Metrology and Measurement Systems, 3, 513-530. https://doi.org/10.24425/mms.2020.132783
- [32] Panek, T. (2009). Statistical Methods in Multivariate Comparative Analysis. SGH Warsaw School of Economics. (in Polish)
- [33] Brown, T. (2015). Confirmatory Factor Analysis in Applied Research (2nd ed.). The Guilford Press.
- [34] Mulaik, S. A. (2009). Foundations of Factor Analysis (2nd ed.). Chapman and Hall/CRC Press. https://doi.org/10.1201/b15851
- [35] Jolliffe, I. T. (2002). Principal Component Analysis (2nd ed.). Springer-Verlag.
- [36] Timm, N. H. (2002). Applied Multivariate Analysis. Springer-Verlag.
- [37] Corsi, M., Cristoforetti, G., Giufrida, M., Hidalgo, M., Legnaioli, S., Palleschi, V., Salvetti, A., Tognoni, E., & Vallebona, C. (2004). Three-dimensional analysis of laser induced plasmas in single and double pulse configuration. Spectrochimica Acta Part B: Atomic Spectroscopy, 59, 723-735. https://doi.org/10.1016/j.sab.2004.02.001
- [38] Bredice, F., Borges, F. O., Sobral, H., Villagran-Muniz, M., Di Rocco, H. O., Cristoforetti, G., Legnaioli, S., Palleschi, V., Pardini, L., Salvetti, AQ., & Tognoni, E. (2006). Evaluation of self-absorption of manganese lines in Laser Induced Breakdown Spectroscopy measurements. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 1294-1303. https://doi.org/10.1016/j.sab.2006.10.015
- [39] Hou, J., Zhang, L., Zhao, Y., Wang, Z., Zhang, Y., Ma, W., Dong, L., Yin, W., Xiao, L., & Jia, S. (2019). Mechanisms and efficient elimination approaches of self-absorption in LIBS. Plasma Science Technology, 21, 1-15. https://doi.org/10.1088/2058-6272/aaf875
- [40] Burakov, V., Tarasenko, N., Nedelko, M., & Isakov, S. (2008). Time-resolved spectroscopy and imaging diagnostics of single pulse and double pulse laser induced plasma from a glass sample. Spectrochimica Acta Part B: Atomic Spectroscopy, 63, 19-26. https://doi.org/10.1016/j.sab.2007.10.050
- [41] Noll, R., Sattmann, R., Sturm, V., & Winkelmarm, S. (2004). Space- and time-resolved dynamics of plasmas generated by laser double pulses interacting with metallic samples. Journal of Analytical and Atomic Spectrometry, 19, 419-428. https://doi.org/10.1039/B315718K
- [42] Zmerli, B., Nessib, N. B., Dimitrijević, M. S., & Sahal-Bréchot, S. (2010). Stark broadening calculations of neutral copper spectral lines and temperature dependence. Physica Scripta, 82(5), 055301. https://doi.org/10.1088/0031-8949/82/05/055301
- [43] Rashid, B., Ahmed, R., Ali, R., & Baig, M. A. (2011). A comparative study of single and double pulse of laser induced breakdown spectroscopy of silver. Physics of Plasmas, 18(7), 073301. https://doi.org/10.1063/1.3599591
- [44] Klus, J., Mikysek, P., Prochazka, D., Pořízka, P., Prochazková, P., Novotný, J., Slobodník, M. & Kaiser, J. (2016). Multivariate approach to the chemical mapping of uranium in sandstone-hosted uranium ores analyzed using double pulse laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 123, 143-149. https://doi.org/10.1016/j.sab.2016.08.014
- [45] De Lucia Jr, F. C., Gottfried, J. L., Munson, C. A., & Miziolek, A. W. (2007). Double pulse laser-induced breakdown spectroscopy of explosives: initial study towards improved discrimination. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(12), 1399-1404. https://doi.org/10.1016/j.sab.2007.10.036
- [46] Gottfried, J. L., De Lucia Jr, F. C., Munson, C. A., & Miziolek, A. W. (2007). Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(12), 1405-1411. https://doi.org/10.1016/j.sab.2007.10.039
- [47] Pořízka, P. (2018). On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review. Spectrochimica Acta Part B: Atomic Spectroscopy, 148, 65-82. https://doi.org/10.1016/j.sab.2018.05.030
- [48] Cui, M., Deguchi, Y., Wang, Z., Tanaka, S., Xue, B., Yao, C., & Zhang, D. (2020). Fraunhofer-type signal for underwater measurement of copper sample using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 168, 1-6. https://doi.org/10.1016/j.sab.2020.105873
- [49] Carter, S., Clough, R., Fisher, A., Gibson, B. & Russell, B. (2021). Atomic spectrometry update: review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 36, 2241-2305. https://doi.org/10.1039/d1ja90049h
- [50] Sheta, S., Afgan, M. S., Hou, Z., Yao, S. C., Zhang, L., Li, Z., & Wang, Z. (2019). Coal analysis by laser-induced breakdown spectroscopy: a tutorial review. Journal of Analytical Atomic Spectrometry, 34(6), 1047-1082. https://doi.org/10.1080/05704928.2020.1739063
- [51] Cui, M., Deguchi, Y., Wang, Z., Tanaka, S., Xue, B., Yao, C., & Zhang, D. (2020). Fraunhofer-type signal for underwater measurement of copper sample using collinear long-short double-pulse laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 168, 105873. https://doi.org/10.1016/j.sab.2022.106398
- [52] Giannakaris, N., Haider, A., Ahamer, C. M., Grünberger, S., Trautner, S., & Pedarnig, J. D. (2022). Femtosecond single-pulse and orthogonal double-pulse laser-induced breakdown spectroscopy (LIBS): Femtogram mass detection and chemical imaging with micrometer spatial resolution. Applied Spectroscopy, 76(8), 926-936. https://doi.org/10.1177/00037028211042398
- [53] Garrett, L. J., Morgan, B. W., Burger, M., Lee, Y., Kim, H., Sabharwall, P., Choi, S., & Jovanovic, I. (2023). Impact of Glass Irradiation on Laser-Induced Breakdown Spectroscopy Data Analysis. Sensors, 23, 691-707. https://doi.org/10.3390/s23020691
- [54] Li, J., Yang, Q., Yao, J., He, X., & Wang, F. (2023). Application of quantitative analysis for aluminum alloy in femtosecond laser-ablation spark-induced breakdown spectroscopy using one-point and multi-line calibration. Analytica Chimica Acta, 1238, 340613. https://doi.org/10.1016/j.aca.2022.340613
- [55] Quintana-Silva, G., Sobral, H., & Rangel-Cárdenas, J. (2022). Characterization of CdTe Thin Films Using Orthogonal Double-Pulse Laser-Induced Breakdown Spectroscopy. Chemosensors, 11(1), 4. https://doi.org/10.3390/chemosensors11010004
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd1157b1-4d15-4468-97ed-4029f9030d6d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.