PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robust microgrids for distribution systems with high solar photovoltaic penetration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A microgrid is an appropriate concept for urban areas with high penetration of renewable power generation, which improves the reliability and efficiency of the distribution network at the consumer premises to meet various loads such as domestic, industrial, and agricultural types. Microgrids comprising inverter-based and synchronous generator-based distribution generators can lead to the instability of the system during the islanded mode of operation. This paper presents a study on designing stable microgrids to facilitate higher penetration of solar power generation into a distribution network. A generalized small signal model is derived for a microgrid with static loads, dynamic loads, energy storages, solar photovoltaic (PV) systems, and diesel generators, incorporating the features of dynamic systems. The model is validated by comparing the transient curves given by the model and a transient simulator subjected to step changes. The result shows that full dynamic models of complex systems of microgrids can be built accurately, and the proposed microgrid is stable for all the considered loading situations and solar PV penetration levels according to the small signal stability analysis.
Rocznik
Strony
785--809
Opis fizyczny
Bibliogr. 34 poz., fig., tab.
Twórcy
  • Department of Electrical Engineering, University of Moratuwa Moratuwa, Sri Lanka
  • Department of Electrical Engineering, University of Moratuwa Moratuwa, Sri Lanka
  • Colombo City, Ceylon Electricity Board Sri Lanka
  • 0009-0003-7037-2491
Bibliografia
  • [1] Tran T.Q., Current limiting algorithm for three-phase grid-connected inverters, Archives of Electrical Engineering, vol. 71, no. 3, pp. 559–579 (2022), DOI: 10.24425/aee.2022.141671.
  • [2] Mishra S., Ramasubramanian D., Improving the small signal stability of a PV-DE-dynamic load-based microgrid using an auxiliary signal in the PV control loop, IEEE Transactions on Power Systems, vol. 30, no. 1, pp. 166–176 (2015), DOI: 10.1109/TPWRS.2014.2322100.
  • [3] Rasheduzzaman M., Mueller J.A., Kimball J.W., Reduced order small-signal model of microgrid systems, IEEE Transactions on Sustainable Energy, vol. 6, no. 4, pp. 1292–1305 (2015), DOI: 10.1109/TSTE.2015.2433177.
  • [4] Shuai Z., Peng Y., Liu X., Li Z., Guerrero J.M., Shen Z.J., Parameter stability region analysis of islanded microgrid based on bifurcation theory, IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6580–6591 (2019), DOI: 10.1109/TSG.2019.2907600.
  • [5] Mohamad A.M.E.I., Mohamed Y.A.R.I., Investigation and assessment of stabilization solutions fordc microgrid with dynamic loads, IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5735–5747 (2019), DOI: 10.1109/TSG.2019.2890817.
  • [6] Majumder R., Some aspects of stability in microgrids, IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3243–3252 (2013), DOI: 10.1109/TPWRS.2012.2234146.
  • [7] Tang X., Deng W., Qi Z., Investigation of the dynamic stability of microgrid, IEEE Transactions on Power Systems, vol. 29, no. 2, pp. 698–706 (2014), DOI: 10.1109/TPWRS.2013.2285585.
  • [8] Mahdavian A., Ghadimi A.A., Bayat M., Microgrid small-signal stability analysis considering dynamic load model, IET Renewable Power Generation, vol. 15, no. 13, pp. 2799–2813 (2021), DOI:10.1049/rpg2.12203.
  • [9] Agrawal R., Changan D., Bodhe A., Small signal stability analysis of standalone microgrid with composite load, Journal of Electrical Systems and Information Technology, vol. 7, no. 1, pp. 1–20 (2020), DOI: 10.1186/s43067-020-00020-9.
  • [10] Kahrobaeian A., Mohamed Y.A.R.I., Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converter based microgrids with dynamic loads, IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1643–1658 (2014), DOI: 10.1109/TIE.2013.2264790.
  • [11] Amelian S.M., Hooshmand R., Small signal stability analysis of microgrids considering comprehensive load models - a sensitivity based approach, in 2013 Smart Grid Conference (SGC), pp. 143–149 (2013), DOI: 10.1109/SGC.2013.6733828.
  • [12] Han Y. et al., Small signal stability analysis of microgrid with multiple parallel inverters, IOP Conference Series: Earth and Environmental Science, vol. 687, no. 1, 012112 (2021), DOI: 10.1088/1755-1315/687/1/012112.
  • [13] Krismanto A.U., Mithulananthan N., Krause O., Stability of renewable energy based microgrid in autonomous operation, Sustainable Energy, Grids and Networks, vol. 13, pp. 134–147 (2018), DOI: 10.1016/j.segan.2017.12.009.
  • [14] Pulcherio M., Illindala M.S., Choi J., Yedavalli R.K., Robust microgrid clustering in a distribution system with inverter-based DERs, IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 5152–5162 (2018), DOI: 10.1109/TIA.2018.2853039.
  • [15] Yang C., Huang L., Xin H., Ju P., Placing grid-forming converters to enhance small signal stability of PLL-integrated power systems, IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3563–3573 (2021), DOI: 10.1109/TPWRS.2020.3042741.
  • [16] Pogaku N., Prodanovic M., Green T.C., Modeling, analysis and testing of autonomous operation of an inverter-based microgrid, IEEE Transactions on Power Electronics, vol. 22, no. 2, pp. 613–625 (2007), DOI: 10.1109/TPEL.2006.890003.
  • [17] Begum M., Li L., Zhu J., Li Z., State-space modelling and stability analysis for microgrids with distributed secondary control, IEEE 27th International Symposium on Industrial Electronics (ISIE), pp. 1201–1206 (2018), DOI: 10.1109/ISIE.2018.8433649.
  • [18] Hamzeh M., Ghafouri M., Karimi H., Sheshyekani K., Guerrero J.M., Power oscillations damping in dc microgrids, IEEE Transactions on Energy Conversion, vol. 31, no. 3, pp. 970–980 (2016), DOI: 10.1109/TEC.2016.2542266.
  • [19] Krismanto A.U., Mithulananthan N., Krause O., Stability of renewable energy based microgrid in autonomous operation, Sustainable Energy, Grids and Networks, vol. 13, pp. 134–147 (2018), DOI: 10.1016/j.segan.2017.12.009.
  • [20] He T., Li S., Wu S., Li K., Small-signal stability analysis for power system frequency regulation with renewable energy participation, Mathematical Problems in Engineering, vol. 2021, pp. 1–13 (2021), DOI: 10.1155/2021/5556062.
  • [21] Ediriweera W.E.P.S., Lidula N.W.A., Design and protection of microgrid clusters: A comprehensive review, AIMS Energy, vol. 10, no. 3, pp. 375–411 (2022), DOI: 10.3934/energy.2022020.
  • [22] Solano J., Rey J.M., Bastidas-Rodríguez J.D.A.I., Hernández A.I., Stability Issues in Microgrids, Cham: Springer International Publishing, pp. 287–310 (2019), DOI: 10.1007/978-3-319-98687-6_11.
  • [23] Majumder R. et al., Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop, IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 796–808 (2010), DOI: 10.1109/TPWRS.2009.2032049.
  • [24] Wang S. et al., A review on the small signal stability of microgrid, PIEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), pp. 1793–1798 (2016), DOI: 10.1109/IPEMC.2016.7512566.
  • [25] Diaz G., Gonzalez-Moran C., Gomez-Aleixandre J., Diez A., Scheduling of droop coefficients for frequency and voltage regulation in isolated microgrids, IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 489–496 (2010), DOI: 10.1109/TPWRS.2009.2030425.
  • [26] Vittal V., Mccalley J.D., Anderson P.M., Fouad A.A., Power system control and stability, John Wiley & Sons (2019).
  • [27] Mon T.W., Aung M.M., Simulation of synchronous machine in stability study for power system, International Journal of Electrical and Electronics Engineering, vol. 1, no. 1, pp. 49–54 (2008), online available at: https://www.ematlab.com/paper/dynamic/D24/D24.pdf.
  • [28] hydro I.M., Phase Locked Loop (PLL) Component, Manitoba Hydro International, Technical Report (2020), online available at: https://www.pscad.com/knowledge-base/article/612.
  • [29] Filipović F., Petronijević M., Mitrović N., Banković B., Kostić V., A novel repetitive control enhanced phase-locked loop for synchronization of three-phase grid-connected converters, Energies, vol. 13, no. 1 (2020), DOI: 10.3390/en13010135.
  • [30] Hu C., Wang Y., Luo S., Zhang F., State-space model of an inverter-based microgrid, 3rd International Conference on Intelligent Green Building and Smart Grid (IGBSG), pp. 1–7 (2018), DOI: 10.1109/IGBSG.2018.8393525.
  • [31] Gong Q., Lei J., Design of a bidirectional energy storage system for a vanadium redox flow battery in a microgrid with soc estimation, Sustainability, vol. 9, pp. 441 (2017), DOI: 10.3390/su9030441.
  • [32] Adelpour M., Hamzeh M., Sheshyekani K., Comprehensive small-signal stability analysis of islanded synchronous generator-based microgrids, Sustainable Energy, Grids and Networks (SEGAN), vol. 26, pp. 100444 (2021), DOI: 10.1016/j.segan.2021.100444.
  • [33] Kundur P., Malik P., Power System Stability and Control, McGraw Hill (2022).
  • [34] Kron G., Tensor Analysis of Networks, John Wiley & Sons (1939).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd113563-22f4-4a66-88b4-760c0aeb8b5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.