PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study on damage detection of base-isolated structure using an adaptive extended Kalman filter

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, experimental studies are performed and presented to verify the capability of the adaptive extended Kalman filter (AEKF) approach for identifying and tracking damages in nonlinear structures. A base-isolated building model consisting of a scaled building model mounted on a rubber-bearing isolation system has been tested experimentally in the laboratory. The non-linear behavior of the base isolators is represented by the Bouc-Wen model. To simulate the structural damages during the test, an innovative device, referred to as the stiffness element device (SED), is proposed to reduce the stiffness of the upper storey of the structure. Various damage scenarios have been simulated and tested. The measured acceleration response data and the AEKF approach are used to track the variation of the stiffness during the test. The tracking results for the stiffness variations correlate well with that of the referenced values. It is concluded that the AEKF approach is capable of tracking the variation of structural parameters leading to the detection of damages in nonlinear structures.
Rocznik
Strony
1013--1026
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China
autor
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
autor
  • State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, China
autor
  • University of California, Department of Civil and Environmental Engineering, Irvine, USA
Bibliografia
  • 1. Abe M., Yoshida J., Fujino Y., 2004, Multi-axial behaviors of laminated rubber bearings and their modeling I: Experimental study, Journal of Structural Engineering, ASCE, 130, 8, 1119-1132
  • 2. Baber T.T., Wen Y.K., 1981, Random vibration of hysteretic degrading system, Journal Engineering Mechanics, ASCE, 107, 1069-1087
  • 3. Chang C.C., Shi Y.F., 2010, Identification of time-varying hysteretic structures using wavelet multiresolution analysis, International Journal of Nonlinear Mechanics, 45, 1, 21-34
  • 4. Chen B.J., Tsai C.S., Chung L.L., Chiang T.C., 2006, Seismic behavior of structures isolation with a hybrid system of rubber bearings, Structural Engineering Mechanics, 22, 6, 761-783
  • 5. Ching J., Beck J.L., Porter K.A., Shaikhutdinov R., 2006, Bayesian state estimation method for nonlinear systems and its application to recorded seismic response, Journal of Engineering Mechanics, 132, 4, 396-410
  • 6. Furukawa T., Ito M., Noori M.N., 2005, System identification of base-isolated building Rusing seismic response data, Journal of Engineering Mechanics, ASCE, 131, 3, 268-273
  • 7. Hoshiya M., Saito E., 1984, Structural identification by extended Kalman filter, Journal of Engineering Mechanics, ASCE, 110, 12, 1757-1771
  • 8. Huang H., Yang J.N., 2008, Damage identification of substructure for local health monitoring, Smart Structures and Systems, 4, 6, 795-807
  • 9. Huang J.W., Zhao B., 2000, The nonlinear dynamic response of multistory base isolated building with laminated rubber bearings, Journal of Xi’an University of Science and Technology, 20, 4, 317-321
  • 10. Kasalanati A., Constantinou M.C., 1999, Experimental study of bridge elastomeric and other isolation and energy dissipation system with emphasis on uplift prevention and high velocity nearsource seismic excitation, Technical Report MCEER-99-0004, University at Buffalo, State University of New York, U.S.A.
  • 11. Komodromos P., 2000, Seismic Isolation for Earthquake-Resistant Structures, WIT Press, Ashurst Lodge, Sons, Inc.
  • 12. Lin J.W., Betti R., Smyth A.W., Longman R.W., 2001, On-line identification of nonlinear hysteretic structural system using a variable trace approach, Earthquake Engineering and Structural Dynamics, 30, 9, 1279-1303
  • 13. Loh C.H., Lin C.Y., Huang C.C., 2000, Time domain identification of frames under earthquake loadings, Journal of Engineering Mechanics, ASCE, 126, 7, 693-703
  • 14. Ma F., Zhang H., Bockstedte A, Foliente G.C., Paevere P., 2004, Parameter analysis of the differential model of hysteresis, Journal of Applied Mechanical, ASME, 71, 3, 342-349
  • 15. Naeim F., Kelly J.M., 1999, Design of Seismic Isolated Structures – From Theory to Practice, John Wiley & Sons, Inc.
  • 16. Narasimhan S., Nagarajaiah S., Johnson E.A., Gavin H.P., 2006, Smart base-isolated benchmark building. Part I: Problem definition, Structural Control and Health Monitoring, 13, 2/3, 573-588
  • 17. Nagarajaiah S., Narasimhan S., Johnson E., 2008, Structural control benchmark problem: Phase II – Nonlinear smart base-isolated building subjected to near-fault earthquakes, Structural Control and Health Monitoring, 15, 5, 653-656
  • 18. Sato T., Chung M., 2005, Structural identification using adaptive Monte Carlo filter, Journal of Structural Engineering, JSCE, 51, 471-477
  • 19. Sato T., Honda R., Sakanoue T., 2001, Application of adaptive Kalman filter to identify a five story frame structure using NCREE experimental data, Proceedings of Structural Safety and Reliability, ICOSSA2001, Swets & Zeitinger: Lisse, 2001, CD-ROM, 7 pages
  • 20. Tan R.Y., Huang M.C., 2000, System identification of a bridge with lead-rubber bearings, Computers and Structures, 74, 267-280
  • 21. Wen Y.K., 1989, Methods of random vibration for inelastic structures, Applied Mechanical Reviews, 42, 2, 39-52
  • 22. Wu M.L., Smyth A., 2008, Real-time parameter estimation for degrading and pinching hysteretic models, International Journal of Nonlinear Mechanics, 43, 9, 822-833
  • 23. Yang J.N., Huang H.W., Pan S.W., 2009, Adaptive quadratic sum-squares error for structural damage identification, Journal of Engineering Mechanics, ASCE, 135, 2, 67-77
  • 24. Yang J.N., Lin S., Huang H., Zhou L., 2006, An adaptive extended Kalman filter for structural damage identification, Structural Control and Health Monitoring, 13, 4, 849-867
  • 25. Yang J.N., Pan S., Lin S., 2007, Least square estimation with unknown excitations for damage identification of structures, Journal of Engineering Mechanics, ASCE, 133, 1, 12-21
  • 26. Yin Q., Zhou L., 2006, Non-linear structural identification using a recursive model reference adaptive Algorithm, Journal of Vibration Engineering, 19, 3, 341-345
  • 27. Yin Q., Zhou L., Mu T.F., Yang J.N., 2012, System identification of rubber-bearings based on experimental tests, Journal of Vibroengineering, 14, 1, 315-324
  • 28. Yin Q., Zhou L., Wang X.M., 2010, Parameter identification of hysteretic model of rubberbearing based on sequential nonlinear least-square estimation, Earthquake Engineering and Engineering Vibration, 9, 3, 375-383
  • 29. Zhou L., Wu S.Y., Yang J.N., 2008, Experimental study of an adaptive extended Kalman filter for structural damage identification, Journal of Infrastructure Systems, ASCE, 14, 1, 42-51
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd0e63da-952e-409f-9269-9916f555bda4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.