Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Goos–Hänchen (GH) lateral shift has been theoretically simulated and observed in lab. GH lateral shift introduces additional traveltime and distance when the incidence angles are larger than the critical angle. For seismic wave, this GH shift is caused by the total refection of an incident beam of P-wave from low to high impedance medium at near and post-critical angles. Because of its large infuences on traveltime and lateral shift displacement, the GH shift should be corrected in normal moveout (NMO) correction for wide-angle refections in seismic data processing. In this paper, we derive the partial derivatives of refection coefcients (PP- and PSV-wave) with respect to circular frequency using the Zoeppritz equations. Then, the delay time and NMO correction term with the behavior of GH lateral shift is derived. The characteristics of delay time and GH induced time diferences are analyzed. The results show that this GH shift could be either positive or negative and the delay on time has large infuences on seismic refections when the incidence angles are larger than the critical angles. The efciency of GH induced NMO correction is tested using synthetic seismic data. The GH induced NMO correction should be done for wide-angle refections during the progress of seismic data processing.
Wydawca
Czasopismo
Rocznik
Tom
Strony
413--423
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
- School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
autor
- Beijing Institute of Graphic Communication, Beijing 102600, China
autor
- Seismic Anisotropy Group, Department of Geosciences, The University of Tulsa, Tulsa, OK 74104, USA
autor
- Seismic Anisotropy Group, Department of Geosciences, The University of Tulsa, Tulsa, OK 74104, USA
Bibliografia
- 1. Aki K, Richards PG (2002) Quantitative seismology. University Science Books, Sausalito
- 2. Alishahi F, Mehrany K (2010) Analytical expression of giant Goos–Hänchen shift in terms of proper and improper modes in waveguide structures with arbitrary refractive index profile. Opt Lett 35(11):1759–1761
- 3. Araújo M, De Leo S, Carvalho S (2013) The frequency crossover for the Goos–Hänchen shift. J Mod Opt 60(20):1772–1780
- 4. Araújo M, Carvalho SA, De Leo S (2014) The asymmetric Goos–Hänchen effect. J Opt 16:015702–15707
- 5. Araújo M, De Leo S, Maia GG (2016) Closed-form expression for the Goos–Hänchen lateral displacement. Phys Rev A 93(2):23801–23810
- 6. Berman PR (2002) Goos–Hänchen shift in negatively refractive media. Phys Rev E Stat Nonlinear Soft Matter Phys 66(6 Pt 2):067603
- 7. Bonnet C, Chauvat D, Emile O, Bretenaker F, Le Floch A, Dutriaux L (2001) Measurement of positive and negative Goos–Hänchen effects for metallic gratings near wood anomalies. Opt Lett 26:666–668
- 8. Brittan J, Warner M (1997) Wide-angle seismic velocities in heterogeneous crust. Geophys J Int 129(2):269–280
- 9. Brown RJS (1969) Normal-moveout and velocity relations for flat and dipping beds and for long offsets. Geophysics 34(2):180–195
- 10. Chen L, Cao Z, Ou F, Li H, Shen Q, Qiao H (2007) Observation of large positive and negative lateral shifts of a reflected beam from symmetrical metal-cladding waveguides. Opt Lett 32(11):1432–1434
- 11. Chen X, Lu X, Ban Y, Li CF (2013) Electronic analogy of the Goos–Hänchen effect: a review. J Opt 15(3):3001–3012
- 12. Gardner LW (1947) Vertical velocities from reflection shooting. Geophysics 12(2):221–228
- 13. Goos F, Hänchen H (1947) Ein neurer fundamentaler versuch zur total reflexion. Annalen der Physik 436:333–346
- 14. Goos F, Hänchen H (1949) Neumessung des Strahlwersetzungseffektes bei totalreflexion. Annalen der Physik 440:251–252
- 15. Ignatovich VK (2004) Neutron from condensed matter, the Goos–Hänchen effect and coherence. Phys Lett A 322(1):36–46
- 16. Lakhtakia A (2003) On plane wave remittances and Goos–Hänchen shifts of planar slabs with negative real permittivity and permeability. Electromagnetics 23(1):71–75
- 17. Leo SD, Kraus RK (2018) Incidence angles maximizing the Goos–Hänchen shift in seismic data analysis. Pure Appl Geophys 175(6):2023–2044
- 18. Lerche I (1990) Reflection of wide-angle acoustic waves from a high velocity interface. Pure Appl Geophys 134(1):109–115
- 19. Lin Y, Zhan J, Tseng S (1997) A new method of analyzing the light transmission in leaky and absorbing planar waveguides. IEEE Photon Technol Lett 9(9):1241–1243
- 20. Liu F, Gao J, Li R, Wang A, Chen H, Yang C (2008) The influence on normal moveout of total reflected SV-wave by Goos–Hänchen effect at a free surface of stratum. Chin J Geophys 51(3):862–868 (in Chinese)
- 21. Liu F, Wang A, Li R, Chen H, Yang C (2009) The influence on normal moveout of total reflected SH-wave by Goos-Hänchen effect at an interface of strata. Chin J Geophys 52(8):2129–2134 (in Chinese)
- 22. Liu F, Meng X, Xiao J, Wang A, Yang C (2012) The Goos–Hänchen shift of wide-angle seismic reflection wave. Sci China Earth Sci 55(5):852–857
- 23. Lotsch HKV (1968) Reflection and refraction of a beam of light at a plane interface. J Opt Soc Am 58(4):1358–1361
- 24. Ostrander WJ (1984) Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence. Geophysics 49(10):1637–1648
- 25. Resch KJ, Lundeen JS, Steinberg AM (2001) Total reflection cannot occur with a negative delay time. IEEE J Quantum Electron 37(6):794–799
- 26. Rupert GB, Chun JH (1975) The block move sum normal moveout correction. Geophysics 40(1):17–24
- 27. Sedek M, Gross L, Tyson S (2015) Automatic NMO correction and full common depth point NMO velocity field estimation in anisotropic media. Pure Appl Geophys 174(1):305–325
- 28. Sun C, Ni C, Li S, Zhang Y (2007) Feature of wide-angle reflection data and correction method. Oil Geophys Prospect 42(1):24–29
- 29. Tsvankin I (1995) Normal moveout from dipping reflectors in anisotropic media. Geophysics 60(1):268–284
- 30. Wang Z (2015) The influence of the Goos–Haenchen effect on seismic data processing and AVO in attenuating media. J Appl Geophys 122:122–133
- 31. Yilmaz O (1987) Seismic data processing. Society of Exploration Geophysics, Tulsa, OK
- 32. Yuan S, Liu Y, Zhang Z, Luo C, Wang S (2019) Prestack stochastic frequency-dependent velocity inversion with rock-physics constraints and statistical associated hydrocarbon attributes. IEEE Geosci Remote Sens Lett 16(1):140–144
- 33. Yuan S, Wei W, Wang D, Shi P, Wang S (2020) Goal-oriented inversion-based NMO correction using a convex l2, 1 -norm. IEEE Geosci Remote Sens Lett 17(1):162–166
- 34. Zhang J, Wapenaar K (2002) Wavefield extrapolation and prestack depth migration in anelastic inhomogeneous media. Geophys Prospect 50(6):629–643
- 35. Zhang W, Guo P, Hu T (2004) Study and practice of wide-angle seismic data processing. Appl Geophys 1(1):31–37
- 36. Zoeppritz K (1919) Erdbebenwellen VIII B, uber die reflexion und durchgang seismischer wellen durch unstetigkeitsflachen. Gottinger Nachr 1:66–84
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd0d3d2d-8c55-4773-83ca-b1ea68e3e0d6