Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Given the added need for eco-friendly material, environmental scientists are constantly on the look-out for new solutions. In this respect, biodegradable polymer proved to be a promising one. The Selfix material, being a bioplastic, is biodegradable and, unlike other plastic products, can be considered feasible for the industry as a smart material capable of biodegrading at the end of its life cycle. Using Selfix, waste paper can be re-used, thus eliminating the need for recycling and helping to reduce the CO2 emissions. The present paper develops 3D models with Selfix material to offer benefits such as easy-cutting and sticking properties in a way that can be educational for children. We examine the mechanical properties of this material using tensile testing, laser-cutting, CNC milling, surface roughness and also scanning electron microscope or SEM.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
1--15
Opis fizyczny
Bibliogr. 20 poz., fig., tab.
Twórcy
autor
- Mechanical Engineering Department, Faculty of Engineering, University of Karabuk, Turkey
Bibliografia
- 1. Monte M.C., E. Fuente A. Blanco and C. Negro, (2008). Waste management from pulp and paper production in the European Union, 293 (308).
- 2. Chandra R. (2015). Environmental Waste Management, 1st Edition, pp. 586.
- 3. Reuter M., E. Worrell (2014), Handbook of Recycling, pp. 600.
- 4. Ghosh S.K. (2016) Waste Management and Resource Efficiency. Proceedings of 6th IconSWM 2016, Springer.
- 5. Squsihy plastik, heat shape mould (2018). Access: http://selfixtechnology.com/.
- 6. Kalamdhad A.S., J. Singh, K. Dhamodharan (2016). Advances in Waste Management, Select Proceedings of Recycle, Springer.
- 7. Freiman S.W., J.J. Mecholsky Jr. (2012), The fracture of brittle materials: Testing and analysis, pp. 196.
- 8. Kaufmann E.N. (Ed.) (2012), Characterization of Materials, 2nd Edition. Wiley & Sons, Inc., pp. 2438. DOI: 10.1002/0471266965.
- 9. Davis J..R. (2004), Tensile Testing, 2nd Edition, pp. 283, ASM International.
- 10. Yilbas B.S. (2017), The Laser Cutting Process (Analysis and Applications), 1st Edition, pp. 328.
- 11. Bowman M. (2015) CNC Milling in the Workshop (Crowood Metalworking Guides), Kindle Edition, pp. 144.
- 12. Rattat Ch. (2017), CNC Milling for Makers: Basics – Techniques – Applications, Paperback, Kindle Edition.
- 13. Poon C.Y., B. Bhushan, (1995) Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler, Wear, 190(1), 76-88.
- 14. Balamurugan R., S. Muruganand, (2015) Study of surface roughness by stylus profilometer and binary laser speckle B/D counting techniques, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 4(5).
- 15. Lee D.H. (2013) 3-Dimensional profile distortion measured by stylus type surface profilometer. Measurement 46(1), 803-814.
- 16. Mattsson L., P. Wagberg, (1993) Assessment of surface finish on bulk scattering materials: A comparison between optical laser stylus and mechanical stylus profilometer. Precision Engineering, 15(3), 141-149.
- 17. Nellist P.D., S.J. Pennycook, (2011) Scanning Transmission Electron Microscopy. Springer Science, pp. 762.
- 18. Goldstein J., D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig Jr., C.E. Lyman, C. Fiori, E. Lifshin (2012), Scanning Electron Microscopy and X-Ray Microanalysis, Springer Science, pp. 762.
- 19. Pocius A.V. (2012), Adhesion and Adhesives Technology, An Introduction, 3rd Edition, pp. 386.
- 20. Ebnesajjad S., A.H. Landrock (2015) Adhesives Technology Handbook, 3rd Edition, pp. 432.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd052c54-5c0e-4382-bb61-4d8cce24b14a