PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling and Observation of Mineral Dust Optical Properties over Central Europe

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is focused on Saharan dust transport to Central Europe/ Poland; we compare properties of atmospheric Saharan dust using data from NAAPS, MACC, AERONET as well as observations obtained during HyMountEcos campaign in June 2012. Ten years of dust climatology shows that long-range transport of Saharan dust to Central Europe is mostly during spring and summer. HYSPLIT back-trajectories indicate airmass transport mainly in November, but it does not agree with modeled maxima of dust optical depth. NAAPS model shows maximum of dust optical depth (~0.04-0.05, 550 nm) in April-May, but the MACC modeled peak is broader (~0.04). During occurrence of mineral dust over Central-Europe for 14% (NAAPS) / 12% (MACC) of days dust optical depths are above 0.05 and during 4% (NAAPS) / 2.5% (MACC) of days dust optical depths exceed 0.1. The HyMountEcos campaign took place in June-July 2012 in the mountainous region of Karkonosze. The analysis includes remote sensing data from lidars, sunphotometers, and numerical simulations from NAAPS, MACC, DREAM8b models. Comparison of simulations with observations demonstrates the ability of models to reasonably reproduce aerosol vertical distributions and their temporal variability. However, significant differences between simulated and measured AODs were found. The best agreement was achieved for MACC model.
Czasopismo
Rocznik
Strony
2550--2590
Opis fizyczny
Biibliogr. 95 poz.
Twórcy
  • Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
  • College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Warsaw, Poland
  • Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
autor
  • Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
  • College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Warsaw, Poland
  • Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
autor
  • Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Marine Meteorology Division, Naval Research Laboratory, Monterey, CA, USA
  • Department of Geoinformatics and Remote Sensing, Faculty of Geography and Regional Studies, University of Warsaw, Warsaw, Poland
Bibliografia
  • AERONET (2002-2012), AERONET climatology, level 2.0 – quality assured data: Belsk, Aerosol Robotic Network, available from: http://aeronet.gsfc.nasa. gov/new_web/V2/climo_new/Belsk_500.html.
  • Alpert, P., and B. Ziv (1989), The Sharav cyclone: observations and some theoretical considerations, J. Geophys. Res. 94, D15, 18495-18514, DOI: 10.1029/ JD094iD15p18495.
  • Anderson, J.R., E.E. Hardy, J.T. Roach, and R.E. Witmer (1976), A Land Use and Land Cover Classification System for Use with Remote Sensor Data, U.S. Geol. Surv. Prof. Paper, Vol. 964, 28 pp.
  • Ansmann, A., J. Bösenberg, A. Chaikovsky, A. Comerón, S. Eckhardt, R. Eixmann, V. Freudenthaler, P. Ginoux, L. Komguem, H. Linné, Á.L. Márquez, V. Matthias, I. Mattis, V. Mitev, D. Müller, S. Music, S. Nickovic, J. Pelon, L. Sauvage, P.Sobolewsky, M.K. Srivastava, A. Stohl, O. Torres, G. Vaughan, U. Wandinger, and M. Wiegner (2003), Long-range transport of Saharan dust to northern Europe: The 11-16 October 2001 outbreak observed with EARLINET, J. Geophys. Res. 108, D24, 4783, DOI: 10.1029/2003JD003757.
  • Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys. 7, 81-95, DOI: 10.5194/acp-7-81- 2007.
  • Bègue, N., P. Tulet, J.-P. Chaboureau, G. Roberts, L. Gomes, and M. Mallet (2012), Long-range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging, J. Geophys. Res. 117, D17, D17201, DOI: 10.1029/2012JD017611.
  • Bellouin, N., J. Quaas, J.-J. Morcrette, and O. Boucher (2013), Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys. 13, 4, 2045-2062, DOI: 10.5194/acp-13-2045-2013.
  • Benedetti, A., J.-J. Morcrette, O. Boucher, A. Dethof, R.J. Engelen, M. Fisher, H. Flentje, N. Huneeus, L. Jones, J.W. Kaiser, S. Kinne, A. Mangold, M. Razinger, A.J. Simmons, and M. Suttie (2009), Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J Geophys. Res. 114, D13, D13205, DOI: 10.1029/2008JD011115.
  • Brooks, N., and M. Legrand (2000), Dust variability over northern Africa and rainfall in the Sahel. In: S.J. Mc Larsen and D. Kiiverton (eds.), Linking Land Surface Change to Climate Change, Kluwer.
  • Chand, D., R. Wood, T.L. Anderson, S.K. Satheesh, and R.J. Charlson (2009), Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nat. Geosci. 2, 3, 181-184, DOI: 10.1038/NGEO437.
  • Chen, L., G. Shi, S. Qin, S. Yang, and P. Zhang (2011), Direct radiative forcing of anthropogenic aerosols over oceans from satellite observations, Adv. Atmos. Sci. 28, 4, 973-984, DOI: 10.1007/s00376-010-9210-4.
  • Choobari, O.A., P. Zawar-Reza, and A. Sturman (2014), The global distribution of mineral dust and its impacts on the climate system: A review, Atmos. Res. 138, 152-165, DOI: 10.1016/j.atmosres.2013.11.007.
  • Christensen, J.H. (1997), The Danish Eulerian Hemispheric Model – a threedimensional air pollution model used for the Arctic, Atmos. Environ. 31, 24, 4169-4191, DOI: 10.1016/S1352-2310(97)00264-1
  • Di Sarra, A., T. Di Iorio, and M. Cacciani (2001), Saharan dust profiles measured by lidar at Lampedusa, J. Geophys. Res. Atmos. 106, D10, 10335-10347.
  • Draxler, R.R., and G.D. Rolph (2010), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY, NOAA Air Resources Laboratory, Silver Spring, MD, available from: http://ready.arl.noaa.gov/HYSPLIT.php.
  • Duce, R.A. (1995), Sources, distributions, and fluxes of mineral aerosols and their relationship to climate. In: R. Charlson and J. Heintzenberg (eds.), Aerosol Forcing of Climate, Wiley, New York, 43-72.
  • Engelstaedter, S., and R. Washington (2007), Atmospheric controls on the annual cycle of North African dust, J. Geophys. Res. Atmos. 112, D3, D03103, DOI: 10.1029/2006JD007195.
  • Engelstaedter, S., I. Tegen, and R. Washington (2006), North African dust emissions and transport, Earth Sci. Rev. 79, 1-2, 73-100, DOI: 10.1016/j.earscirev. 2006.06.004.
  • Eresmaa, N., A. Karppinen, S.M. Joffre, J. Rasanen, and H. Talvitie (2006), Mixing height determination by ceilometers, Atmos. Chem. Phys. 6, 1485-1493.
  • Fernald, F.G. (1984), Analysis of atmospheric lidar observations: some comments, Appl. Opt. 23, 5, 652-653.
  • Flentje, H., B. Heese, J. Reichardt, and W. Thomas (2010), Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. 3, 3643-3673, DOI: 10.5194/amtd-3-3643-2010.
  • Formenti, P., J.L. Rajot, K. Desboeufs, S. Caquineau, S. Chevaillier, S. Nava, A. Gaudichet, E. Journet, S. Triquet, S. Alfaro, M. Chiari, J. Haywood, H. Coe, and E. Highwood (2008), Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOP0/ DABEX and DODO field campaigns, J. Geophys. Res. Atmos. 113, D20, D00C13, DOI: 10.1029/2008JD009903.
  • Freudenthaler, V., M. Esselborn, M. Wiegner, B. Heese, M. Tesche, A. Ansmann, D. Müller, D. Althausen, M. Wirth, A. Fix, G. Ehret, P. Knippertz, C. Toledano, M. Garhammer, and M. Seefeldner (2009), Depolarizationratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006, Tellus B 61, 1, 165-179, DOI: 10.1111/j.1600-0889.2008.00396.x.
  • Frey, S., K. Poenitz, G. Teschke, and H. Wille (2010), Detection of aerosol layers with ceilometer and the recognition of the mixed layer depth. In: Proc. Int. Symp. for Advancement of Boundary Layer Remote (ISARS), 3646-3647.
  • Ginoux, P., M. Chin, I. Tegen, J.M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin (2001), Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res. 106, D17, 20255-20273, DOI: 10.1029/ 2000JD000053.
  • Goudie, A.S., and N.J. Middleton (2001), Saharan dust storms: nature and consequences, Earth Sci. Rev. 56, 1-4, 179-204, DOI: 10.1016/S0012-8252 (01)00067-8.
  • Gross, S., M. Tesche, V. Freudenthaler, C. Toledano, M. Wiegner, A. Ansmann, D. Althausen, and M. Seefeldner (2011), Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2, Tellus B 63, 4, 706-724, DOI: 10.1111/j.1600-0889. 2011.00556.x.
  • Guerrero-Rascado, L., F.J. Olmo, I. Avilés-Rodríguez, F. Navas-Guzmán, D. PérezRamírez, H. Lyamani, and L. Alados Arboledas (2009), Extreme Saharan dust event over the southern Iberian Peninsula in September 2007: active and passive remote sensing from surface and satellite, Atmos. Chem. Phys. 9, 21, 8453-8469.
  • Guerrero-Rascado, J.L., M.J. Costa, D. Bortoli, A.M. Silva, H. Lyamani, and L. Alados-Arboledas (2010), Infrared lidar overlap function: an experimental determination, Opt. Express 18, 19, 20350-20359, DOI: 10.1364/ OE.18.020350.
  • Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometerlidar inter-comparision: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. 3, 3907-3924, DOI: 10.5194/amtd- 3-3907-2010.
  • Heintzenberg, J. (2009), The SAMUM-1 experiment over Southern Morocco: overview and introduction, Tellus B 61, 1, 2-11, DOI: 10.1111/j.1600-0889. 2008.00403.x.
  • Hess, M., P. Koepke, and I. Schult (1998), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc. 79, 5, 831-844, DOI: 10.1175/1520-0477(1998)0792.0.CO;2.
  • Hogan, T.F., and L.R. Brody (1993), Sensitivity studies of the Navy’s global forecast model parameterizations and evaluation of improvements to NOGAPS, Mon. Weather Rev. 121, 8, 2373-2395, DOI: 10.1175/1520-0493(1993) 1212.0.CO;2.
  • Hogan, T.F., and T.E. Rosmond (1991), The description of the Navy operational global atmospheric prediction system, Mon. Weather Rev. 119, 8, 1786- 1815, DOI: 10.1175/1520-0493(1991)1192.0.CO;2.
  • Holben, B.N., T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima , F. Lavenu, I. Jankowiak, and A. Smirnov (1998), AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ. 66, 1, 1-16, DOI: 10.1016/S0034-4257(98)00031-5.
  • Huang, L., J.H. Jiang, J.L. Tackett, H. Su, and R. Fu (2013), Seasonal and diurnal variations of aerosol extinction profile and type distribution from CALIPSO 5-year observations, J. Geophys. Res. Atmos. 118, 10, 4572-4596, DOI: 10.1002/jgrd.50407.
  • IPCC (2014), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)), Cambridge University Press, Cambridge, 1535 pp.
  • Israelevich, P.L., E. Ganor, Z. Levin, J.H. Joseph (2003), Annual variations of physical properties of desert dust over Israel, J. Geophys. Res. 108, D13, 4381, DOI: 10.1029/2002JD003163.
  • Jimenez, J.L., M.R. Canagaratna, N.M. Donahue, A.S.H. Prevot, Q. Zhang, J.H. Kroll, P.F. DeCarlo, J.D. Allan, H. Coe, N.L. Ng, A.C. Aiken, K.S. Docherty, I.M. Ulbrich, A.P. Grieshop, A.L. Robinson, J. Duplissy, J.D. Smith, K.R. Wilson, V.A. Lanz, C. Hueglin, Y.L. Sun, J. Tian, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J.M. Tomlinson, D.R. Collins, M.J. Cubison, E.J. Dunlea, J.A. Huffman, T.B. Onasch, M.R. Alfarra, P.I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J.Y. Sun, Y.M. Zhang, K. Dzepina, J.R. Kimmel, D. Sueper, J.T. Jayne, S.C. Herndon, A.M. Trimborn, L.R. Williams, E.C. Wood, A.M. Middlebrook, C.E. Kolb, U. Baltensperger, and D.R. Worsnop (2009), Evolution of organic aerosols in the atmosphere, Science 326, 5959, 1525-1529, DOI: 10.1126/science.1180353.
  • Kandler, K., L. Schuetz, C. Deutscher, M. Ebert, H. Hofmann, S. Jackel, R.P. Knippertz, K. Lieke, A. Masling, A. Petzold, A. Schladitz, B. Weinzier, A. Wiedensohler, S. Zorn, and S. Weinbruch (2009), Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006, Tellus B 61, 1, 32-50, DOI: 10.1111/j.1600- 0889.2008.00385.x.
  • Klett, J.D. (1985), Lidar inversions with variable backscatter/extinction values, Appl. Opt. 24, 11, 211-220, DOI: 10.1364/AO.24.001638.
  • Landulfo, E., A. Papayannis, P. Artaxo, A.D.A. Castanho, A.Z. de Freitas, R.F. Souza, N.D. Vieira Junior, M.P.M.P. Jorge, O.R. Sánchez-Ccoyllo, and D.S. Moreira (2003), Synergetic measurements of aerosols over São Paulo, Brazil using LIDAR, sunphotometer and satellite data during the dry season, Atmos. Chem. Phys. 3, 5, 1523-1539, DOI: 10.5194/acp-3-1523-2003.
  • Lopes, F.J.S., E. Landulfo, and M.A. Vaughan (2013), Evaluating CALIPSO’s 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil, Atmos. Meas. Tech. 6, 11, 3281-3299, DOI: 10.5194/amt-6-3281- 2013.
  • Maciszewska, A., K. Markowicz, and M. Witek (2010), Multi year analysis of the aerosol optical thickness over Europe, Acta Geophys. 58, 6, 1147-1163, DOI: 10.2478/s11600-010-0034-5.
  • Marécal, V., V.H. Peuch, C. Andersson, S. Andersson, J. Arteta et al. (2015), A regional air quality forecasting system over Europe: the MACC-II daily ensemble production. Geosci. Model Dev. 8, 9, 2777-2813, DOI: 10.5194/ gmd-8-2777-2015.
  • Markowicz, K.M., P.J. Flatau, A.M. Vogelmann, P.K. Quinn, and D. Bates (2003), Modeling and observations of infrared radiative forcing during ACE-Asia, Quart. J. Roy. Meteorol. Soc. 129, 594, 2927-2947.
  • Markowicz, K.M., P.J. Flatau, A.E. Kardas, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of the boundary layer vertical aerosol extinction structure, J. Atmos. Ocean. Techn. 25, 6, 928-944, DOI: 10.1175/ 2007JTECHA 1016.1.
  • Markowicz, K.M., T. Zielinski, S. Blindheim, M. Gausa, A.K. Jagodnicka, A.E. Kardas, W. Kumala, Sz.P. Malinowski, M. Posyniak, T. Petelski, and T. Stacewicz (2012), Study of vertical structure of aerosol optical properties by sun photometers and ceilometer during macron campaign in 2007, Acta Geophys. 60, 5, 1308-1337, DOI: 10.2478/s11600-011-0056-7.
  • Marsham, J.H., D.J. Parker, C.M. Grams, C.M. Taylor, and J.M. Haywood (2008), Uplift of Saharan dust south of the intertropical discontinuity, J. Geophys. Res. Atmos. 113, D21, D21102.
  • Marsham, J.H., M. Hobby, C.J.T. Allen, J.R., Banks, M. Bart et al. (2013), Meteorology and dust in the central Sahara: Observations from Fennec supersite-1 during the June 2011 Intensive Observation Period, J. Geophys. Res. 118, 10, 4069-4089, DOI: 10.1002/jgrd.50211.
  • Martucci, G., C. Milroy, and C.D. O’Dowd (2010), Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos. Ocean. Technol. 2, 305-318.
  • McConnell, C.L., E.J. Highwood, H. Coe, P. Formenti, B. Anderson et al. (2008), Seasonal variations of the physical and optical characteristics of Saharan dust: Results from the Dust Outflow and Deposition to the Ocean (DODO) experiment, J. Geophys. Res. 113, D14, DOI: 10.1029/2007JD009606.
  • McKendry, I.G., D. van der Kamp, K.B. Strawbridge, A. Christen, and B. Crawford (2009), Simultaneous observations of boundary-layer aerosol layers with CL31 ceilometer and 1064/532 nm lidar, Atmos. Environ. 43, 36, 5847- 5852, DOI: 10.1016/j.atmosenv.2009.07.063.
  • Mona, L., Z. Liu, D. Müller, A. Omar, A. Papayannis, G. Pappalardo, N. Sugimoto, and M. Vaughan (2012), Lidar measurements for desert dust characterization: an overview, Adv. Meteorol. 2012, 356265, DOI: 10.1155/2012/ 356265.
  • Mona, L., N. Papagiannopoulos, S. Basart, J. Baldasano, and I. Binietoglou et al. (2014), EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy, Atmos. Chem. Phys. 14, 16, 8781-8793, DOI: 10.5194/acp-14-8781-2014.
  • Morcrette, J.-J. et al. (2009), Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: forward modeling, J. Geophys. Res. 114, D06206, DOI: 10.1029/2008JD011235.
  • Morys, M., Mims III, F.M. Hagerup, S. Anderson, S.E. Baker, A. Kia, and J. Walkup (2001), Design calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106, D13, 14573-14582, DOI: 10.1029/2001JD900103.
  • Münkel, C., S. Emeis, W.J. Mueller, and K.P. Schaefer (2004), Aerosol concentration measurements with a lidar ceilometer: Results of a one year measuring campaign. In: K. Schaefer et al. (eds.), Remote Sensing of Clouds and the Atmosphere VIII, International Society for Optical Engineering (SPIE Proc. 5235), 486-496.
  • Nickovic, S., G. Kallos, A. Papadopoulos, and O. Kakaliagou (2001), A model for prediction of desert dust cycle in the atmosphere, J. Geophys. Res. Atmos. 106, D16, 18113-118129, DOI: 10.1029/2000JD900794.
  • O’Connor, E.J., A.J. Illingworth, and R.J. Hogan (2004), A technique for autocalibration of cloud lidar, J. Atmos. Ocean. Technol. 21, 5, 777-786, DOI: 10.1175/1520-0426(2004)0212.0.CO;2.
  • Osborne, S.R., B.T. Johnson, J.M. Haywood, A.J. Baran, M.A.J. Harrison et al. (2008), Physical and optical properties of mineral dust aerosol during the Dust and Biomass-burning Experiment, J. Geophys. Res. 113, D00C03, DOI: 10.1029/2007JD009551.
  • Papayannis, A., D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A.D.A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski (2005), Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project, Atmos. Chem. Phys. 5, 8, 2065-2079.
  • Papayannis, A., H.Q. Zhang, V. Amiridis, H.B. Ju, G. Chourdakis, G. Georgoussis, C. Pérez, H.B. Chen, P. Goloub, R.E. Mamouri, S. Kazadzis, D. Paronis, G. Tsaknakis, and J.M. Baldasano (2007), Extraordinary dust event over Beijing, China, during April 2006: Lidar, Sun photometric, satellite observations and model validation, J. Geophys. Res. 34, 7, L07806, DOI: 10.1029/2006GL029125.
  • Papayannis, A., V. Amiridis, L. Mona, G. Tsaknakis, D. Balis, J. Bösenberg, A. Chaikovski, F. De Tomasi, I. Grigorov, I. Mattis, V. Mitev, D. Müller, S. Nickovic, C. Pérez, A. Pietruczuk, G. Pisani, F. Ravetta, V. Rizi, M. Sicard, T. Trickl, M.Wiegner, and M. Gerding (2008), Systematic lidar observations of aerosol optical properties during Saharan dust intrusions over Europe, in the frame of EARLINET (2000-2002): Statistical analysis and results, J. Geophys. Res. 113, D10, D10204, DOI: 10.1029/2007JD009028.
  • Pappalardo, G., L. Mona, G. D’Amico, U. Wandinger, M. Adam, A. Amodeo et al. (2013), Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET, Atmos. Chem. Phys. 13, 8, 4429-4450, DOI: 10.5194/acp-13-4429-2013.
  • Pavese, G., M. Calvello, F. Esposito, L. Leone, and R. Restieri (2012), Effects of Saharan dust advection on atmospheric aerosol properties in the WestMediterranean area, Adv. Meteorol. 2012, 730579, DOI: 10.1155/2012/ 730579.
  • Perez, C., S. Nickovic, G. Pejanovic, J. M. Baldasano, and E. Ozsoy (2006a), Interactive dust-radiation modeling: A step to improve weather forecasts, J. Geophys. Res. 111, D16, D16206, DOI: 10.1029/2005JD006717.
  • Perez, C., S. Nickovic, J.M. Baldasano, M. Sicard, F. Rocadenbosch, and V.E. Cachorro (2006b), A long Saharan dust event over the western Mediterranean: Lidar, Sun photometer observations, and regional dust modeling, J. Geophys. Res. 111, D15, D15214, DOI: 10.1029/2005JD006579.
  • Pisani, G., A. Boselli, N. Spinelli, and X. Wang (2011), Characterization of Saharan dust layers over Naples (Italy) during 2000-2003 EARLINET project, Atmos. Res. 102, 3, 286-299, DOI: 10.1016/j.atmosres.2011.07.012.
  • Preißler, J., F. Wagner, S.N. Pereira, and J.L. Guerrero-Rascado (2011), Multiinstrumental observation of an exceptionally strong Saharan dust outbreak over Portugal, J. Geophys. Res. 116, D24, D24204, DOI: 10.1029/ 2011JD016527.
  • Prospero, J.M., P. Ginoux, O. Torres, S.E. Nicholson, and T.E. Gill (2002), Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 total ozone mapping spectrometer (toms) absorbing aerosol product, Rev. Geophys. 40, 1, 2-1-2-31, DOI: 10.1029/2000RG 000095.
  • Sasano, Y., E.V. Browell, and S. Ismail (1985), Error caused by Rusing a constant extinction/backscattering ratio in the lidar solution, Appl. Opt. 24, 22, 3929- 3932, DOI: 10.1364/AO.24.003929.
  • Schutgens, N., M. Nakata, and T. Nakajima (2012), Estimating aerosol emissions by assimilating remote sensing observations into a global transport model, Remote Sens. 4, 11, 3528-3543, DOI: 10.3390/rs4113528.
  • Shifrin, K.S. (1995), Simple relationships for the Angstrom parameter of disperse systems, Appl. Opt. 34, 21, 4480-4485, DOI: 10.1364/AO.34.004480. S
  • inha, P., D. Kaskaoutis, R. Manchanda, and S. Sreenivasan (2012), Characteristics of aerosols over Hyderabad in southern Peninsular India: synergy in the classification techniques, Ann. Geophys. 30, 9, 1393-1410, DOI: 10.5194/ angeo-30-1393-2012.
  • Smirnov, A., B.N. Holben, T.F. Eck, O. Dubovik, and I. Slutsker (2000), Cloud screening and quality control algorithms for the AERONET database, Rem. Sens. Env. 73, 3, 337-349, DOI: 10.1016/S0034-4257(00)00109-7.
  • Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys. 10, 6, 2813-2824, DOI: 10.5194/acp-10-2813-2010.
  • Stachlewska, I.S., K.M. Markowicz, and M. Piądłowski (2010), On forward Klett’s inversion of ceilometer signals. In: 25th ILRC International Laser Radar Conference, 5-9 July 2010, St. Petersburg, Russia.
  • Stachlewska, I.S., M. Piądłowski, S. Migacz, A. Szkop, A.J. Zielińska, and P.L. Swaczyna (2012), Ceilometer observations of the boundary layer over Warsaw, Poland, Acta Geophys. 60, 5, 1386-1412, DOI: 10.2478/s11600- 012-0054-4.
  • Sundström, A.-M., T. Nousiainen, and T. Petäjä (2009), On the quantitative lowlevel aerosol measurements using ceilometer-type lidar, J. Atmos. Ocean. Technol. 26, 11, 2340-2352, DOI: 10.1175/2009JTECHA1252.1.
  • Tegen, I., K. Schepanski, and B Heinold ( 2013), Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations, Atmos. Chem. Phys. 13, 5, 2381-2390, DOI: 10.5194/acp-13-2381- 2013.
  • Tesche, M., A. Ansmann, D. Mueller, D. Althausen, I. Mattis et al. (2009), Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM, Tellus B 61, 1, 144-164, DOI: 10.1111/j.1600- 0889.2008.00390.x.
  • Varga, G., J. Kovács, and G. Újvári (2013), Analysis of Saharan dust intrusions into the Carpathian Basin (Central Europe) over the period of 1979-2011, Global Planet Change 100, 333-342, DOI: 10.1016/j.gloplacha.2012. 11.007.
  • Vogelmann, A., P. Flatau, M. Szczodrak, K. Markowicz, and P. Minnett (2003), Observations of large greenhouse effects for anthropogenic aerosols, Geophys. Res. Lett. 30, 12, 1654-1657.
  • Wagner, F., and A.M. Silva (2008), Some considerations about Angström exponent distributions, Atmos. Chem. Phys. 8, 3, 481-489.
  • Wandinger, U., and A. Ansmann (2002), Experimental determination of the lidar overlap profile with Raman lidar, Appl. Opt. 41, 3, 511-514, DOI: 10.1364/ AO.41.000511.
  • Wang, X., A. Boselli, L. D’Avino, G. Pisani, N. Spinelli, A. Amodeo, A. Chaikovsky, M. Wiegner, S. Nickovic, A. Papayannis, M.R. Perrone, V. Rizi, L. Sauvage, and A. Stohl (2008), Volcanic dust characterization by EARLINET during Etna’s eruptions in 2001-2002, Atmos. Environ. 42, 5, 893-905, DOI: 10.1016/j.atmosenv.2007.10.020.
  • Wang, Z., H.H. Zhang, X. Jing, and X. Wei (2013), Effect of non-spherical dust aerosol on its direct radiative forcing, Atmos. Res. 120, 112-126, DOI: 10.1016/j.atmosres.2012.08.006.
  • Weitkamp, C. (ed.) (2005), Lidar: Range-resolved Optical Remote Sensing of the Atmosphere, Springer, New York. Westphal, D.L., O.B. Toon, and T.N. Carlson (1988), A case study of mobilization and transport of Saharan dust, J. Atmos. Sci. 45, 15, 2145-2175, DOI: 10.1175/1520-0469(1988)0452.0.CO;2.
  • Wiegner, M., and A. Geiß (2012), Aerosol profiling with the Jenoptik ceilometer CHM15kx, Atmos. Meas. Tech. 5, 8, 1953-1964, DOI: 10.5194/amt-5- 1953-2012.
  • Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D8, D08215, DOI: 10.1029/2006JD 007779.
  • Wong, M.S., M.I. Shahzad, J.E. Nichol, K.H. Lee, and P.W. Chan (2013), Validation of MODIS, MISR, OMI, and CALIPSO aerosol optical thickness using ground-based sunphotometers in Hong Kong, Int. J. Remote Sens. 34, 3, 897-918, DOI: 10.1080/01431161.2012.720739.
  • Zawadzka, O., K. Markowicz, A. Pietruczuk, T. Zielinski, and J. Jaroslawski (2013), Impact of urban pollution emitted in Warsaw on aerosol properties, Atmos. Environ. 69, 15-28, DOI: 10.1016/j.atmosenv.2012.11.065.
  • Zhang, J., J.S. Reid, D.L. Westphal, N.L. Baker, and E.J. Hyer (2008), A system for operational aerosol optical depth data assimilation over global oceans, J. Geophys. Res. 113, D10, D10208, DOI: 10.1029/2007JD009065.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd039561-e4ae-49b9-b576-f5d078cd5048
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.