PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Local error structures and order conditions in terms of Lie elements for exponential splitting schemes

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We discuss the structure of the local error of exponential operator splitting methods. In particular, it is shown that the leading error term is a Lie element, i.e., a linear combination of higher-degree commutators of the given operators. This structural assertion can be used to formulate a simple algorithm for the automatic generation of a minimal set of polynomial equations representing the order conditions, for the general case as well as in symmetric settings.
Rocznik
Strony
243--256
Opis fizyczny
Bibliogr. 14 poz., tab.
Twórcy
autor
  • Institute for Analysis and Scientific Computing Wiedner Hauptstrasse 8–10/E101, A-1040 Vienna, Austria
autor
  • Institute for Analysis and Scientific Computing Wiedner Hauptstrasse 8–10/E101, A-1040 Vienna, Austria
Bibliografia
  • [1] W. Auzinger, O. Koch, M. Thalhammer, Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part II. Higher order methods for linear problems, J. Comput. Appl. Math. 255 (2013), 384–403.
  • [2] W. Auzinger et. al., Adaptive time splitting methods, in preparation.
  • [3] S. Blanes, F. Casas, On the convergence and optimization of the Baker-Campbell--Hausdorff formula, Lin. Alg. Appl. 378 (2004), 135–158.
  • [4] S. Blanes, P.C. Moan, Practical symplectic partitioned Runge-Kutta and Runge-Kutta--Nyström methods, J. Comput. Appl. Math. 142 (2002), 313–330.
  • [5] S. Blanes, F. Casas, P. Chartier, A. Murua, Optimized high-order splitting methods for some classes of parabolic equations, Math. Comp. 82 (2013), 1559–1576.
  • [6] S. Blanes, F. Casas, A. Murua, Splitting and composition methods in the numerical integration of differential equations, Bol. Soc. Esp. Mat. Apl. 45 (2008), 89–145.
  • [7] P. Chartier, A. Murua, An algebraic theory of order, M2AN Math. Model. Numer. Anal. 43 (2009), 607–630.
  • [8] J.-P. Duval, Géneration d’une section des classes de conjugaison et arbre des mots de Lyndon de longueur bornée, Theoret. Comput. Sci. 60 (1988), 255–283.
  • [9] E. Hairer, C. Lubich, G. Wanner, Geometrical Numerical Integration – Stucture--Preserving Algorithms for Ordinary Differential Equations, 2nd ed., Springer-Verlag, Berlin, Heidelberg, 2006.
  • [10] E. Hansen, A. Ostermann, Exponential splitting for unbounded operators, Math. Comp. 78 (2009), 1485–1496.
  • [11] M. Suzuki, General theory of higher-order decomposition of exponential operators and symplectic integrators, Phys. Lett. A 165 (1992), 387–395.
  • [12] M. Thalhammer, High-order exponential operator splitting methods for time-dependent Schrödinger equations, SIAM J. Numer. Anal. 46 (2008), 2022–2038.
  • [13] Z. Tsuboi, M. Suzuki, Determining equations for higher-order decompositions of exponential operators, Int. J. Mod. Phys. B 09 (1995), 3241–3268.
  • [14] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A 150 (1990), 262–268.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bd012efe-78c1-467d-8020-8a7f214b548f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.