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Abstract.We discuss the structure of the local error of exponential operator splitting meth-
ods. In particular, it is shown that the leading error term is a Lie element, i.e., a linear
combination of higher-degree commutators of the given operators. This structural assertion
can be used to formulate a simple algorithm for the automatic generation of a minimal set
of polynomial equations representing the order conditions, for the general case as well as in
symmetric settings.
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1. INTRODUCTION AND BACKGROUND

The main result of this paper is a statement about the structure of the leading local
error term of a consistent exponential splitting method (1.2a); see Theorem 2.6. This
has two major implications:

(i) The a priori and a posteriori local error theory from [1], relying on such a local
error structure, extends to schemes of arbitrary order.

(ii) Systems of polynomial equations in the method’s coefficients defining a minimal,
non-redundant set of order conditions can be set up in an elementary way.

Statement (ii) is in contrast to several related techniques to generate order conditions;
see [5–7, 9, 11–14] and references therein. The difference is the following: The proof
of Theorem 2.6 below is based on a qualitative, structural argument exploiting the
Baker-Campbell-Hausdorff (BCH) formula (1.10). For the algorithmic implementation
of order conditions we do not make any use of explicit expansions based on BCH.
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Rather, we leave the job of setting up the desired system of equations to the computer.
In particular, exploiting the assertion of Theorem 2.6 leads to a simple algorithmic
formulation (see Algorithm 2 and its variants). Algorithm 2 may be considered as a
form of recursive implicit elimination, justified by the fact that, due to Theorem 2.6,
the condition for order p generated by the algorithm is correct assuming that the
conditions for lower orders already hold.

In principle, any set of conditions for arbitrary order may be generated in this
way; it is ‘merely’ limited by computational resources. Namely, the computational
effort rapidly grows with the number of stages s and the desired order p since the
number of generated terms always multiplies by s when the order is increased by 1.
(This type of computational complexity is inherent also to alternative approaches.)

Thus, an open questions remains. ‘Leaving the job . . . to the computer’ is conve-
nient and easy to implement but computationally rather expensive. A deeper under-
standing of the structure of order conditions might help optimizing the procedure.

Remark 1.1. In this paper we give detailed arguments for the practically most rele-
vant case of a splitting into two operators, see (1.1). However, all this can be extended
to the general case of an additive multi-component splitting. In the general case, re-
lation (1.8) below, for instance, is to be replaced by a corresponding multinomial
expansion.

1.1. EXPONENTIAL SPLITTING SCHEMES, LOCAL ERROR, AND DEFECT

Consider a linear evolution equation

d
dt u(t) = H u(t) = (A+B)u(t), u(0) given. (1.1)

In computational practice, A,B ∈ Cd×d are matrices arising from spatial discretiza-
tion of a partial differential equation. However, our considerations are relevant in a
more general setting, see Remark 1.3.

Exponential splitting approximations are of the form

S(t) = S1...s(t) := S1(t) · · · Ss(t) ≈ etH , (1.2a)

where
Sj(t) = etAj etBj , Aj = aj A, Bj = bj B, j = 1 . . . s. (1.2b)

Here, the stages Sj(t) satisfy the Sylvester-type evolution equations

d
dtSj(t) = Aj Sj(t) + Sj(t)Bj = ajASj(t) + bj Sj(t)B, (1.3a)
Sj(0) = I. (1.3b)

In [1] the local error of higher-order splitting schemes is represented and analyzed in
the following way. With the defect

D(t) = d
dt S(t)−H S(t) (1.4)
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of the splitting operator with respect to the given evolution equation (1.1), the local
error operator

L(t) = S(t)− etH (1.5a)

has the integral representation

L(t) =
t∫

0

e(t−τ)HD(τ) dτ, L(0) = 0. (1.5b)

Successive differentiation of (1.5) and evaluation at t = 0 shows that the asymptotic
order p ≥ 1,

L(t) = O(tp+1) for t→ 0 (1.6)

is characterized by the equivalent conditions

0 = d
dt L(0) =

d2

dt2 L(0) = . . . = dp

dtp L(0), (1.7a)

⇔ 0 = D(0) = d
dt D(0) = . . . = dp−1

dtp−1 D(0). (1.7b)

For a given number s of stages, expressions for the derivatives dn

dtnD(0) can be gener-
ated as follows:

Algorithm 1.

• Start with the symbolic expression S(t) = S1(t) · · · Ss(t). The symbolic variables
A, B as well as the Sj(t) are declared to be non-commuting.
• Differentiate S(t) (chain rule) and initialize 1)

X (t) := d
dt S(t)−H S(t), H = A+B.

• In X (t), replace by the terms d
dt Sj(t) by ajASj(t) + bj Sj(t)B (see (1.3a)).

• Evaluate X (t) at t = 0, i.e., replace the terms Sj(t) by 1 (see (1.3b)), resulting in
an expression for D(0).

• For q = 1, 2, . . .:
– Differentiate X (t) and set 2) X (t) := d

dtX (t).
– In X (t), replace the terms d

dt Sj(t) by ajASj(t) + bj Sj(t)B.
– Evaluate X (t) at t = 0, i.e., replace the terms Sj(t) by 1, resulting in an

expression for dq

dtq D(0).

1) Here, X (t) = D(t).
2) Here, X (t) = dq

dtq
D(t).
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Example 1.2. As an illustration, we describe the initial steps of Algorithm 1 for
s = 2:

D(0) = (a1 + a2 − 1)A+ (b1 + b2 − 1)B,

d
dt D(0) = (a1 + a2)(a1 + a2 − 1)A2+

+ (2 a1 b1 + 2 a1 b2 + 2 a2 b2 − b1 − b2)AB+

+ (2 a2 b1 − a1 − a2)BA+
+ (b1 + b2)(b1 + b2 − 1)B2.

At a first glance, the derivative d
dt D(0) has an intricate structure. Now we repeat

this computation, assuming that the first-order condition D(0) = 0 is satisfied. I.e.,
we assume a1 + a2 = b1 + b2 = 1 and modify the initialization of X (t) in Algorithm 1
accordingly: X (t) := d

dt S(t)− ((a1 + a2)A+ (b1 + b2)B)S(t). This results in

D(0) = 0,
d
dt D(0) = (a1 b1 + a1 b2 − a2 b1 + a2 b2) (AB −BA).

We observe: If it is assumed that the first-order condition is satisfied, D(0) = 0, then

d
dt D(0) = c2 [A,B],

with a homogeneous polynomial c2 of degree 2. Thus, the second-order condition is
given by

c2 = c2(a1, a2, b1, b2) = a1 b1 + a1 b2 − a2 b1 + a2 b2 = 0.

In [1] the analogous structure of the terms dp

dtp D(0) in terms of commutators of
A and B is explicitly investigated up to order p = 3. For p ≥ 4, computing these
expressions become laborious.

The higher derivatives dq

dtq S(0), which are generated in course of Algorithm 1, can
also be expressed by means of the following straightforward expansion. Since, as a
consequence of (1.3a), we have

dk

dtk
Sj(0) =

k∑
`=0

(
k

`

)
Ak−`j B`j , k = 0, 1, 2, . . . , (1.8)

n-fold differentiation of S(t) = S1(t) · · · Ss(t) yields the multinomial Leibniz repre-
sentation (with k = (k1, . . . , ks))

dq

dtq S(0) =
∑
|k|=q

(
q

k

) s∏
j=1

kj∑
`=0

(
kj
`

)
A
kj−`
j B`j , q = 0, 1, 2, . . . . (1.9a)

Thus,

dq

dtq L(0) =
dq−1

dtq−1 D(0) = dq

dtq S(0)−H
dq−1

dtq−1 S(0), q = 1, 2, 3, . . . , (1.9b)
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with dq−1

dtq−1 S(0), dq

dtq S(0) according to (1.9a). Equivalently, with dq

dtq e
tH(0) = Hq we

have
dq

dtq L(0) =
dq−1

dtq−1 D(0) = dq

dtq S(0)−H
q, q = 1, 2, 3, . . . , (1.9c)

with dq

dtq S(0) from (1.9a).
Step-wise multinomial expansion according to (1.9) generates a rapidly growing

number of terms as q increases. This representation provides no immediate clue on
the structure of dq

dtq L(0) = dq−1

dtq−1 D(0) in terms of higher-degree commutators of A
and B.

We are aiming for a combination of this expansion with a qualitative structural
argument. Using Lie theory we prove that a hierarchical dependence of order con-
ditions, as indicated in Example 1.2, is valid in general. Algorithm 2 below based
on (1.9) generates a minimal, non-redundant set of order conditions.

The extension to schemes with special symmetries is also discussed.

Remark 1.3. The order conditions discussed in this paper remain valid if nonlinear
evolution equations are considered and splitting schemes are defined via successive
application of (nonlinear) subflows. This can be argued using the calculus of Lie
derivatives, as explained in [9]. Moreover, they remain valid in a more general Ba-
nach space setting and for unbounded (differential) operators, provided the numerical
process remains in the domain of definition of these operators; see for instance [1,10].

As the following considerations show, our approach can be used to generate a
‘universal’ set of equations (order conditions), e.g. for s = 12 and p = 6. Conditions
for a smaller number of stages or lower order can be obtained by setting the superfluous
variables aj , bj equal to zero and cancelling all terms containing these variables.

1.2. ALGEBRAIC SETTING

Let C〈A,B〉 denote the ring of formal power series in the non-commuting variables A
and B. Introducing the Lie bracket

[A,B] = AB−BA (the commutator of A and B)

we obtain a free Lie algebra [C〈A,B〉] generated by A and B. We use the following
terminology: A and B are commutators of degree 1, and commutators of degree q are
of the form [X,Y ] where X and Y are commutators of degree α and q − α.

A homogeneous Lie element of degree q is a complex linear combination of commu-
tators of degree q. For the sake of a unique representation of an arbitrary homogeneous
Lie element of degree q, we use the Lyndon basis3) which is represented by so-called
Lyndon words Lq,`(A,B). Table 1 lists the Lyndon words up to degree q = 6. (Lyndon
words of arbitrary degree can, e.g., be generated by an algorithm due to Duval [8].)
Here, e.g., A2B2 represents the commutator [A, [[A,B], B]], and the element A2B2

does not occur in any other commutator of degree 4.

3) Also other basis sets may be used.
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Table 1. Lyndon words (`q is the number of words of degree q)

q `q Lyndon words Lq,`(A,B) of degree q

1 2 A, B

2 1 AB

3 2 A2B, AB2

4 3 A3B, A2B2, AB3

5 6 A4B, A3B2, A2BAB, A2B3, ABAB2, AB4

6 9 A5B, A4B2, A3BAB, A3B3, A2BAB2, A2B2AB, A2B4, ABAB3, AB5

. . .

Our main theoretical tool is the Baker-Campbell-Hausdorff (BCH) formula (cf.
e.g. [3, 9]),

etA etB = et(A+B)+ t2

2 [A,B]+ t3

12 ([A,[A,B]]+[[A,B],B]) + ... (1.10)

The exponent on the right-hand side is a locally convergent power series where the
coefficients associated with tq are homogeneous Lie elements of degree q.

We stress that our approach makes no explicit use of the detailed form of the terms
in BCH and analogous expansions; we only refer to its structure for the purpose of
qualitative argumentation.

2. THEORETICAL RESULTS

Remark 2.1. In the following, expansions of the form

etX
[1] + t2X[2] + ... (2.1)

are considered, where the exponent is a locally convergent power series and the coeffi-
cients X [q] associated with tq are homogeneous Lie elements of degree q. We call (2.1)
a BCH-like expansion.

The following argument is standard in the study of exponential splitting schemes,
see [9].

Lemma 2.2. Each splitting operator S(t) = S1...s(t) of the form (1.2a) admits a
BCH-like expansion

S(t) = etXs = etX
[1]
s + t2X[2]

s + ... . (2.2)

Proof. For s = 1 we have S1(t) = etA1 etB1 , and the assertion follows immediately
from the BCH formula (1.10). Assume that (2.2) is true for some s ≥ 1. Then,

S1···s+1(t) = S1···s(t)Ss+1(t) = etXs etYs+1 ,

where
Ss+1(t) = etYs+1 = etY

[1]
s+1 + t2 Y

[2]
s+1 + ...

is the BCH-like expansion of Ss+1(t) = etAs+1 etBs+1 . The BCH expansion of the
product S1···s+1(t) = etXs etYs+1 involves commutators in terms of the tkX [k]

s and
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t` Y
[`]
s+1, and reordering the resulting series with respect to powers of t yields the

asserted form. �

We will make use of the analogous assertion for e−t(A+B)S(t) :

Lemma 2.3. For each splitting operator S(t) = S1...s(t) of the form (1.2a) there
exists a BCH-like expansion

e−t(A+B)S(t) = etZs = etZ
[1]
s + t2Z[2]

s + ... . (2.3)

Proof. Similar as for Lemma 2.2. Here, the induction is started by the BCH expansion
of e−t(A+B) etA1 , and the induction argument is analogous. �

Lemma 2.4. The following assertions are equivalent, for t → 0 and with Wq ∈
C〈A,B〉 :

et(A+B) = S(t) + tqWq +O(tq+1), (2.4a)

e−t(A+B)S(t) = 1− tqWq +O(tq+1). (2.4b)

Proof. Assume that (2.4a) holds. Multiplication by e−t(A+B) gives

1− e−t(A+B)S(t) = e−t(A+B) tqWq +O(tq+1),

and the identity

e−t(A+B) tqWq =
(
1− t(A+B) +O(t2)

)
tqWq = tqWq +O(tq+1)

implies (2.4b). The reverse implication is proved in an analogous way. �

We also make use of the following equivalence:

Lemma 2.5. For a BCH-like expansion

etZ = etZ
[1]+t2Z[2] + ...

of a time-dependent operator Z = Z(t) and q ∈ N, the following assertions are equiv-
alent:

etZ = 1 + tqWq +O(tq+1) for t→ 0, (2.5a)

Z [1] = . . . = Z [q−1] = 0. (2.5b)

Here, Wq = Z [q] is a homogeneous Lie element of degree q.

Proof. Evidently, (2.5b) implies (2.5a). The reverse implication follows by an induction
argument: Taylor expansion of etZ yields

etZ
[1]+t2Z[2]+t3Z[3] + ... =

= 1 + t Z [1] + t2
(
1
2 [(Z

[1])
2
+ Z [2]

)
+ t3

(
1
6 [(Z

[1])
3
+ Z [1]Z [2] + Z [3]

)
+ . . .
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Clearly, the coefficient of tk involves a term Z [k] and certain products of terms Z [`]

with ` < k. Comparison with (2.5a) for arbitrary q ≥ 1 yields

Z [1] = 0 ⇒ Z [2] = 0 ⇒ . . . ⇒ Z [q−1] = 0,

and hence Wq = Z [q], as asserted. �

These preparations permit us to state the following result.

Theorem 2.6. Suppose that a splitting operator S(t) = S1...s(t) of the form (1.2a)
satisfies the order conditions (1.7) for some p ≥ 1. Then, the local error operator
L(t) = S(t)− et(A+B) satisfies

L(t) = tp+1Wp+1 +O(tp+2) for t→ 0. (2.6)

Here, Wp+1 is a homogeneous Lie element of degree p+1.

Proof. Using Lemma 2.4 with q = p+ 1 implies that (2.6) is equivalent to

e−t(A+B)S(t) = 1− tp+1Wp+1 +O(tp+2).

Lemma 2.3 shows that e−t(A+B)S(t) admits a BCH-like expansion (2.3), and therefore
Lemma 2.5 applies. In particular, Wp+1 is a homogeneous Lie element of degree p+1,
as asserted. �

3. ALGORITHMIC GENERATION OF ORDER CONDITIONS

In terms of derivatives of the defect (1.4), Theorem 2.6 states: If the conditions (1.7)
for some order q − 1 hold, that is, if

D(0) = d
dt D(0) = . . . = dq−2

dtq−2 D(0) = 0, (3.1a)

then dq−1

dtq−1 D(0) is a Lie element of degree q, i.e., it is a linear combination

dq−1

dtq−1 D(0) =
`q∑
`=1

cq,` Cq,`(A,B). (3.1b)

Here, Cq,`(A,B) is the unique commutator of degree q represented by the Lyndon word
Lq,`(A,B), see Sec. 1.2. We stress that dq−1

dtq−1 D(0) is indeed not of the form (3.1b)
if (3.1a) does not hold; cf. Example 1.2.

Making use of assertion (3.1), a non-redundant set of conditions for order p can
be generated in an elementary way on the basis of 4) expansion (1.9).

4) One may also proceed from Algorithm 1, but this turns out to be much less efficient in compu-
tational practice.
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Algorithm 2. Generate conditions for order p.

• Define the conditions for order 1,

c1,1 := a1 + . . .+ as − 1 = 0,

c1,2 := b1 + . . .+ bs − 1 = 0.

• Set Aj := aj A, Bj := bj B, j = 1 . . . s, and H :=
∑s
j=1(Aj +Bj).

• Set S(1) := d
dt S(0) = H.

• For q = 2 . . . p :
– Compute the expression 5) S(q) := dq

dtq S(0) by means of (1.9a).
– Compute D(q−1) := dq−1

dtq−1 D(0) = S(q) −H S(q−1) (see (1.9b)).
– Extract the coefficients cq,`, ` = 1 . . . `q, in D(q−1) of the `q Lyndon words
Lq,`(A,B) of degree q.

– Define the conditions for order q,

cq,` = 0, ` = 1 . . . `q.

The cq,` are homogeneous polynomials of degree q in the variables aj and bj ,
with integer coefficients.

Algorithm 2 can be modified in several ways. We may also compute D(q−1) ac-
cording to (1.9c),

dq−1

dtq−1 D(0) = S(q) −Hq. (3.2)

Also, in both versions we may set H = A + B. This leads to a sparser system of
(nonhomogeneous) equations. For version (3.2) with H = A+B we obtain equations
of the form homogeneous polynomial (· · · ) = 1, where the coefficient 1 stems from Hq.
This version appears to perform best, and it produces a sparser output than the other
variants. Furthermore, coefficients can be extracted term by term from the multino-
mial representation (1.9a) of S(q) and summed up, without explicitly computing S(q).

We have implemented these variants of Algorithm 2 in Maple 17 6) using the
packages combinat, combstruct (for some elementary combinatorics), and Physics
(for representing and manipulating expressions involving non-commuting symbolic
variables).

Example 3.1. We list the resulting 5 equations for s = p = 3 (algorithmic version
based on (3.2) with H = A+B):

a1 + a2 + a3 = 1,

b1 + b2 + b3 = 1,

2 a2 b1 + 2 a3 b1 + 2 a3 b2 = 1,

3 a2 b
2
1 + 3 a3 b

2
1 + 6 a3 b1 b2 + 3 a3 b

2
2 = 1,

3 a22 b1 + 6 a2 a3 b1 + 3 a23 b1 + 3 a23 b2 = 1.

5) S(q) is stored in memory for use in the subsequent step.
6) Maple is a Trademark of MapleSoft, Inc.
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For this system, the general one-dimensional solution manifold is easily determined
using Maple. A rational solution is given by

a1 = 7
24 , a2 = 3

4 , a3 = − 1
24 ,

b1 = 2
3 , b2 = − 2

3 , b3 = 1.

Example 3.2. For s = 7 and p = 5 we obtain 14 polynomial equations of degree ≤ 5
in 14 variables. This system involves already about 1.800 individual terms (for ver-
sion (3.2) with H = A+B).

Some new results concerning the numerical determination of coefficients from our
order conditions will be reported in [2].

Remark 3.3. Using a computer algebra system is convenient and straightforward,
but not very efficient in so far as for higher values of s and p a rapidly growing
number of terms is generated. These could be coded in a more efficient way in any
programming language supporting appropriate data structures for representing the
terms in (1.9a). Up to now we have not implemented such a code but expect it to
perform significantly better. Its complexity is the same, but computing time and
memory requirements are expected to be smaller.

4. SYMMETRIES

Smaller systems of equations are obtained if we restrict ourselves to schemes with
special symmetries.

4.1. SCHEMES WITH REFLECTED COEFFICIENTS

Assume
aj ≡ bs+1−j , and bj ≡ as+1−j . (4.1)

In this case, the two first-order conditions reduce to a single equation. The number
of higher-order conditions appears reduced: Consider

S(t) = et a1A et b1B · · · et asA et bsB =

= et a1A et b1B · · · et b1A et a1B ;
(4.2a)

interchanging the role of A and B we obtain

S̃(t) = et a1B et b1A · · · et b1B et a1A. (4.2b)

Since A and B are arbitrary non-commuting operators, the order conditions for the the
schemes (4.2a) and (4.2b) are equivalent. These conditions are certain expressions in A
and B or B and A, respectively, and therefore due to symmetry they are redundant. A
look at Table 1 shows that it is now sufficient to consider the coefficients of a reduced
set of Lyndon words specified in Table 2.

Algorithm 2 can be modified by choosing the reduced set of variables and imposing
the appropriately reduced set of equations.
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Table 2. A reduced set of Lyndon words

q # Lyndon words Lq,`(A,B) of degree q

1 1 A

2 1 AB

3 1 A2B

4 2 A3B, A2B2

5 3 A4B, A3B2, A2BAB

6 5 A5B, A4B2, A3BAB, A3B3, A2BAB2

. . .

4.2. SYMMETRIC SCHEMES

Symmetric schemes satisfying

aj ≡ as+1−j , bj ≡ bs−j , and bs = 0, (4.3a)

are of particular relevance for accurate long-time integration, e.g., for time-reversible
evolution equations; see for instance [9,11]. A splitting operator (1.2a) with symmetric
coefficients (4.3a) satisfies

S−1(t) = S(−t). (4.3b)

Lemma 2.2 implies

S(−t) = e−tX
[1]
s + t2X[2]

s − t
3X[3]

s + t4X[4]
s − ...,

S−1(t) = e−tX
[1]
s − t

2X[2]
s − t

3X[3]
s − t

4X[4]
s − ...,

and therefore all coefficients X [2`]
s , ` = 1, 2, . . . vanish.

A symmetric scheme has even order, as already stated in [14]. In the context
of our approach, this can be seen by modifying the argument given in the proof of
Lemma 2.4: Assume that the scheme has order p. Then, making use of (4.3b), we
obtain

S(t)− et(A+B) = tp+1Wp+1(A,B) +O(tp+2),

e−t(A+B)S(t)− I = tp+1Wp+1(A,B) +O(tp+2),

e−t(A+B)S(t)− S−1(t)S(t) = tp+1Wp+1(A,B) +O(tp+2),(
e−t(A+B) − S(−t)

)
S(t) = tp+1Wp+1(A,B) +O(tp+2),

e−t(A+B) − S(−t) = tp+1Wp+1(A,B) +O(tp+2).

(4.4a)

Here,Wp+1(A,B) is a Lie element of degree p+1, a well-defined expression in A and B.
On the other hand,

e−t(A+B) − S(−t) = −(−t)p+1
Wp+1(−A,−B) +O(tp+2). (4.4b)

If p is odd, then

−(−t)p+1
Wp+1(−A,−B) = −tp+1Wp+1(A,B),

so that comparing (4.4b) with (4.4a) shows that Wp+1(A,B) = 0.
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This means that the conditions for even order, i.e., the terms involving Lie elements
of even degree, can be ignored, because for p even, the conditions for order p are
automatically satisfied provided the conditions for order p− 1 are valid.

Example 4.1. Setting up the conditions for a symmetric scheme of order s = 4,
we obtain 2 first-order conditions (ensuring order 2) and 2 third-order conditions
(ensuring order 4) for the 4 variables a1, b1, a2, b2. Solving this system we obtain a
pair of complex solutions, and a real solution corresponding to the scheme derived
in [14].

For a symmetric scheme with s = 11, with 11 independent coefficients, we obtain
10 equations for order p = 6. This system involves about 3.700 individual terms (for
version (3.2) with H = A+B).

Remark 4.2. With some modifications, our approach can be adapted for the case of
composition schemes, e.g., compositions of stages of Strang type as in [5, 6].
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