PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical behavior around double circular openings in a jointed rock mass under uniaxial compression

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To better understand the mechanical behavior in a jointed rock mass, a series of uniaxial compression tests were conducted on non-persistently jointed rock specimens with double circular holes. Acoustic emission (AE) and digital image correlation (DIC) techniques were applied to capture micro-crack events and real-time strain field evolution in the specimens. The results indicate that the existence of non-persistent joints has a significant influence on the strength characteristics of the specimens. Specifically, peak strength decreases at first and reaches a minimum at 30° then increases with increase in the joint dip angle. DIC technology has successfully monitored the development of surface strain fields. The fracture evolution process is comprehensively understood. Every sudden change in a strain field is usually accompanied by apparent AE events and stress–strain curves take the form of oscillations. The crack coalescence modes among joints can be summarized as six types and the crack coalescence patterns around holes and joints can be divided into three categories. These results are helpful to understanding further the mechanical properties and fracture mechanism of openings in non-persistently jointed rock masses.
Rocznik
Strony
264--281
Opis fizyczny
Bibliogr. 41 poz., fot., rys., wykr.
Twórcy
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  • Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 97187 Luleå, Sweden
Bibliografia
  • [1]Yang ZY, Chen JM, Huang TH. Effect of joint sets on the strength and deformation of rock mass models. Int J Rock Mech Min Sci. 1998;35(1):75–84. https ://doi.org/10.1016/S1365 -1609(98)80024-5.
  • [2] Singh M, Rao KS, Ramamurthy T. Strength and deformational behaviour of a jointed rock mass. Rock Mech Rock Eng. 2002;35(1):45–64. https ://doi.org/10.1007/s0060 30200 008.
  • [3] Huang D, Cen DF, Ma GW, Huang RQ. Step-path failure of rock slopes with intermittent joints. Landslides. 2015;12(5):911–26. https ://doi.org/10.1007/s1034 6-014-0517-6.
  • [4] Einstein HH, Veneziano D, Baecher GB, O’Reilly KJ. The effect of discontinuity persistence an rock slope stability. Int J Rock Mech Min Sci. 1983;20(5):227–36. https ://doi.org/10.1016/0148-9062(83)90003 -7.
  • [5] Wang TT, Huang TH. A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints. Int J Rock Mech Min Sci. 2009;46(3):521–30. https ://doi.org/10.1016/j.ijrmms.2008.09.011.
  • [6] Prudencio M, Jan MVS. Strength and failure modes of rock mass models with non-persistent joints. Int J Rock Mech Min Sci. 2007;44(6):890–902. https ://doi.org/10.1016/j.ijrmms.2007.01.005.
  • [7] Bahrani N, Kaiser PK. Strength degradation of non-persistently jointed rockmass. Int J Rock Mech Min Sci. 2013;62:28–33. https://doi.org/10.1016/j.ijrmm s.2013.03.013.
  • [8] Bahaaddini M, Sharrock G, Hebblewhite BK. Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Comput Geotech. 2013;49:206–25. https ://doi.org/10.1016/j.compg eo.2012.10.012.
  • [9] Yin P, Wong RHC, Chau KT. Coalescence of two parallel pre-existing surface cracks in granite. Int J Rock Mech Min Sci. 2014;68:66–84. https ://doi.org/10.1016/j.ijrmm s.2014.02.011.
  • [10] Li YP, Chen LZ, Wang YH. Experimental research on pre-cracked marble under compression. Int J Solids Struct. 2005;42(9):2505–16. https ://doi.org/10.1016/j.ijsol str.2004.09.033.
  • [11] Yang SQ, Dai YH, Han LJ, Jin ZQ. Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression. Eng Fract Mech. 2009;76(12):1833–45. https ://doi.org/10.1016/j.engfr acmech.2009.04.005.
  • [12] Yang SQ, Jing HW. Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. Int J Fract. 2011;168(2):227–50. https ://doi.org/10.1007/s1070 4-010-9576-4.
  • [13] Yang SQ. Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformationfailure. Eng Fract Mech. 2011;78(17):3059–81. https ://doi.org/10.1016/j.engfr acmec h.2011.09.002.
  • [14] Cao P, Liu TY, Pu CZ, Lin H. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Eng Geol. 2015;187:113–21. https ://doi.org/10.1016/j.enggeo.2014.12.010.
  • [15] Cao RH, Cao P, Fan X, Xiong X, Lin H. An experimental and numerical study on mechanical behavior of ubiquitous-joint brittle rock-like specimens under uniaxial compression. Rock Mech Rock Eng. 2016;49(11):4319–38. https ://doi.org/10.1007/s00603-016-1029-6.
  • [16] Feng P, Dai F, Liu Y, Xu NW, Du HB. Coupled effects of static-dynamic strain rates on the mechanical and fracturing behaviors of rock-like specimens containing two unparallel fissures. Eng Fract Mech. 2019;207:237–53. https ://doi.org/10.1016/j.engfr acmech.2018.12.033.
  • [17] Feng P, Dai F, Liu Y, Du HB. Mechanical behaviors of rock-like specimens with two non-coplanar fissures subjected to coupled static-dynamic loads. Eng Fract Mech. 2018;199:692–704. https://doi.org/10.1016/j.engfr acmec h.2018.07.009.
  • [18] Hoek E, Bieniawski ZT. Brittle fracture propagation in rock under compression. Int J Fract. 1965;1(3):137–55. https ://doi.org/10.1007/BF001 86851 .
  • [19] Dyskin AV, Sahouryeh E, Jewell RJ, Joer H, Ustinov KB. Influ-ence of shape and locations of initial 3-d cracks on their growth in uniaxial compression. Eng Fract Mech. 2003;70(15):2115–36. https ://doi.org/10.1016/s0013 -7944(02)00240 -0.
  • [20] Park CH, Bobet A. Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci. 2009;46(5):819–29. https ://doi.org/10.1016/j.ijrmm s.2009.02.006.
  • [21] Wong LNY, Einstein HH. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min Sci. 2009;46(2):239–49. https ://doi.org/10.1016/j.ijrmm s.2008.03.006.
  • [22] Yang SQ, Tian WL, Huang YH, Ma ZG, Fan LF, Wu ZJ. Experi-mental and discrete element modeling on cracking behavior of sandstone containing a single oval flaw under uniaxial compression. Eng Fract Mech. 2018;194:154–74. https ://doi.org/10.1016/j.engfr acmec h.2018.03.003.
  • [23] Wei Z, Yang SQ, Tian WL. Experimental and numerical investigation of brittle sandstone specimens containing different shapes of holes under uniaxial compression. Eng Fract Mech. 2018;200:430–50. https ://doi.org/10.1016/j.engfr acmech.2018.08.016.
  • [24] Yang SQ, Huang YH, Tian WL, Zhu JB. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression. Eng Geol. 2017;217:35–48. https ://doi.org/10.1016/j.enggeo.2016.12.004.
  • [25] Yang XX, Jing HW, Tang CA, Yang SQ. Effect of parallel joint interaction on mechanical behavior of jointed rock mass models. Int J Rock Mech Min Sci. 2017;92:40–53. https ://doi.org/10.1016/j.ijrmm s.2016.12.010.
  • [26] Wang XM, Zhu ZM, Wang M, Ying P, Dong YQ. Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts. Eng Fract Mech. 2017;181:52–64. https ://doi.org/10.1016/j.engfr acmec h.2017.06.024.
  • [27] Wang M, Zhu ZM, Dong YQ, Zhou L. Study of mixed-mode I/II fractures using single cleavage semicircle compression specimens under impacting loads. Eng Fract Mech. 2017;177:33–44. https ://doi.org/10.1016/j.engfr acmec h.2017.03.042.
  • [28] Cao RH, Cao P, Lin H, Ma GW, Fan X, Xiong XG. Mechanical behavior of an opening in a jointed rock-like specimen under uniaxial loading: experimental studies and particle mechanics approach. Arch Civ Mech Eng. 2018;18(1):198–214. https ://doi.org/10.1016/j.acme.2017.06.010.
  • [29] Miao ST, Pan PZ, Wu ZH, Zhao S. Fracture analysis of sandstone with a single filled flaw under uniaxial compression. Eng Fract Mech. 2018;204:319–43. https ://doi.org/10.1016/j.engfr acmech.2018.10.009.
  • [30] Zhou XP, Wang YT, Zhang JZ, Liu FN. Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness. Rock Mech Rock Eng. 2018;52(3):691–718. https ://doi.org/10.1007/s0060 3-018-1600-4.
  • [31] Zhu QQ, Li DY, Han ZY, Li XB, Zhou ZL. Mechanical properties and fracture evolution of sandstone specimens containing different inclusions under uniaxial compression. Int J Rock Mech Min Sci. 2019;115:33–47. https ://doi.org/10.1016/j.ijrmm s.2019.01.010.
  • [32] Zhang QB, Zhao J. A review of dynamic experimental tech-niques and mechanical behaviour of rock materials. Rock Mech Rock Eng. 2014;47(4):1411–78. https ://doi.org/10.1007/s00603-013-0463-y.
  • [33] Wong RHC, Lin P, Tang CA, Chau KT. Creeping damage around an opening in rock-like material containing non-persistent joints. Eng Fract Mech. 2002;69(17):2015–27. https ://doi.org/10.1016/S0013 -7944(02)00074 -7.
  • [34] Wong RHC, Lin P, Tang CA. Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression. Mech Mater. 2006;38(1–2):142–59. https://doi.org/10.1016/j.mechm at.2005.05.017.
  • [35] Fan X, Li KH, Lai HP, Xie YL, Cao RH, Zheng J. Internal stress distribution and cracking around flaws and openings of rock block under uniaxial compression: a particle mechanics approach. Com-put Geotech. 2018;102:28–38. https ://doi.org/10.1016/j.compgeo.2018.06.002.
  • [36] ISRM. Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. Int J Rock Mech Min Sci. 1979;16(2):138–40. https ://doi.org/10.1016/0148-9062(79)91451 -7.
  • [37] Aramis GOM (2018) Theory and user manual. http://www.gom.com. Accessed Dec 2018.
  • [38] Zhang XP, Wong LNY. Crack initiation, propagation and coalescence in rock-like material containing two flaws: a numerical study based on bonded-particle model approach. Rock Mech Rock Eng. 2013;46(5):1001–21. https ://doi.org/10.1007/s00603-012-0323-1.
  • [39] Yang SQ, Yin PF, Zhang YC, Chen M, Zhang XP, Jing HW, Zhang QY. Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole. Int J Rock Mech Min Sci. 2019;114:101–21. https ://doi.org/10.1016/j.ijrmm s.2018.12.017.
  • [40] Wong RHC, Chau KT. Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci. 1998;35(2):147–64. https ://doi.org/10.1016/S0148 -9062(97)00303 -3.
  • [41] Sagong M, Bobet A. Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci. 2002;39(2):229–41. https ://doi.org/10.1016/S1365-1609(02)00027 -8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcfbb0d8-b39b-4085-80bc-34b20e3d3bd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.