PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of blackcurrant and chokeberry press residue in snack products

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fruit and vegetable processing by-products, undervalued until recently, are rich sources of nutrients. This study investigated properties of extruded corn puffs with addition (5–20%) of blackcurrant or chokeberry pressings. We assessed expansion rate, water absorption index (WAI) and water solubility index (WSI) of the produced extrudates, the concentration of polyphenols, and antioxidant activity measured by FRAP method and ABTS method. The puffs with addition of chokeberry pressings had higher WSI values, higher phenolic acids, flavonols, and anthocyanins content, and higher antioxidant activity than puffcorn with addition of blackcurrant pressings. The corn puffs with addition of fruit pressings contained much higher concentrations of phenolic compounds and were characterized by much higher antioxidant activity than pure puffcorn. This confirms the usefulness of addition of such fruit processing by-products in order to manufacture functional food.
Rocznik
Strony
13--19
Opis fizyczny
Bibliogr. 38 poz., tab.
Twórcy
  • Wroclaw University of Environmental and Life Science, Department of Food Storage and Technology, Chełmońskiego 37, 51-630 Wroclaw, Poland
  • Wroclaw University of Environmental and Life Science, Department of Food Storage and Technology, Chełmońskiego 37, 51-630 Wroclaw, Poland
  • Wroclaw University of Environmental and Life Science, Department of Human Nutrition, Chełmońskiego 37, 51-630 Wroclaw, Poland
  • Wroclaw University of Environmental and Life Science, Department of Food Storage and Technology, Chełmońskiego 37, 51-630 Wroclaw, Poland
autor
  • Wroclaw University of Environmental and Life Science, Department of Food Storage and Technology, Chełmońskiego 37, 51-630 Wroclaw, Poland
Bibliografia
  • 1. Nawirska, A., Sokół-Łętowska, A., & Kucharska, A.Z. (2007). Antioxidant characteristics of pomace from different fruits. ŻYWNOŚĆ. Nauka. Technol . Jakość . 53, 120–125 (in Polish).
  • 2. Baranowski, K., Baca, E., Salamon, A., Michałowska, D., Meller, D. & Karaś, M. (2009). Possibilities of retrieving and making a practical use of phenolic compounds from waste products: blackcurrant and chokeberry pomace and spent hops. ŻYWNOŚĆ. Nauka. Technol. Jakość. 65(4), 100–109 (in Polish).
  • 3. Oszmiański, J. & Wojdyło, A. (2005). Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol . 221 (6), 809–813. DOI: 10.1007/s00217-005-0002-5.
  • 4. Nawirska, A. & Kwasniewska, M. (2005). Dietary fibre fractions from fruit and vegetable processing waste. Food Chem . 91(2), 221–225. DOI: 10.1016/j.foodchem.2003.10.005.
  • 5. Tarko, T., Duda-Chodak, A. & Bebak, A. (2012). Biological activity of selected fruit and vegetable pomaces. ŻYWNOŚĆ. Nauka. Technol. Jakość . 83, 55–65 (in Polish).
  • 6. Stojceska, V., Ainsworth, P., Plunkett, A., Ibanoglu, E. & Ibanoglu, S. (2008). Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. J. Food Eng . 87, 554–563. DOI: 10.1016/jfoodeng.2008.01.009.
  • 7. Stojceska, V., Ainsworth, P., Plunkett, A. & Ibanoglu, S. (2009). The effect of extrusion cooking using different water feed rates on the quality of ready-to-eat snacks made from food by-products. Food Chem . 114(1), 226–232. DOI: 10.1016/j.foodchem.2008.09.043.
  • 8. Altan, A., McCarthy, K.L. & Maskan, S. (2008). Evaluation of snack foods from barley–tomato pomace blends by extrusion processing. J. Food Eng. 84, 231–242. DOI: 10.1016/j.jfoodeng.2007.05.014.
  • 9. Masatcioglu, M.T., Yalcin, E., Kim, M., Ryu, G.H., Celik, S. & Köksel H. (2013). Physical and chemical properties of tomato, green tea, and ginseng-supplemented corn extrudates produced by conventional extrusion and CO 2 injection process. Eur. Food Res. Technol . 237, 5, 801–809. DOI: 10.1007/s00217-013-2053-3.
  • 10. Bisharat, G.I., Lazou, A.E., Panagiotou, N.M., Krokida, M.K. & Maroulis, Z.B. (2015). Antioxidant potential and quality characteristics of vegetable-enriched corn based extruded snacs. J. Food Sci. Technol. 52(7), 3986–4000. DOI: 10.1007/s13197-014-1519- z .
  • 11. Mäkilä, L., Laaksonen, O., Diaz, J.M.R., M., Myllymäki, O., Lehtomäki, I., La akso, S. Jahreis, G., Jouppila, K., Larmo, P., Yang, B. & Kallio, H. (2014). Exploiting b lackcurrant juice press residue in extruded snacks, 57, 2, 618–627, DOI: 10.1016/j.lwt.2014.02.005.
  • 12. Tahvonen, R., Hietanen, A., Sankalo, T., Korteniemi, V.M., Laakso, P., & Kallio, H. (1998). Black currant seeds as a nutrient source in breakfast cereals produced by extrusion cooking, Eur. Food Res.Technol ., 206, 5, 360–363.
  • 13. Wojdyło, A., Oszmiański, J. & Bielicki, P. (2013). Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. J. Agric. Food Chem. 61, 2762–2772. DOI: 10.1021/jf304969b.
  • 14. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26 (9–10), pp. 1231–1237. DOI: 10.1016/S0891-5849(98)00315-3.
  • 15. Nawirska, A. & Kwaśniewska, M. (2004). Dietary fibre fractions from fruit processing waste. Acta Sci. Pol. , 3, 1, 13–20 (in Polish).
  • 16. Yanniotis, S., Petrarki, A. & Soumpasi, E. (2007). Effect of pectin and wheat fibers on quality attributes of extruded cornstarch. J. Food Eng . 80, 594–599. DOI: 10.1016/j.foodeng.2006.06.018.
  • 17. Potter, R., Stojceska, V. & Plunkett, A. (2013). The use of fruit powders in extruded snacks suitable for children’s diets. LWT- Food Sci. Technol . 51, 537–544. DOI: 10.1016/j.lwt.2012.11.015.
  • 18. Cortes, R.N.F., Guzman, I.V. & Martinez-Bustos, M. (2014). Effects of some extrusion variables on physicochemical characteristics of extruded corn starch-passion fruit pulp (Passiflora edulis) snacks. Plant Foods Hum. Nutr. 69, 365–371, DOI: 10.1007/s11130-014-0443-8.
  • 19. Pieszka, M., Gogol, P., Pietras, M. & Pieszka, M. (2015). Valuable components of dried pomaces of chockeberry, black currant, strawberry, apple and carrot as a source of natura antioxidants and nutraceuticals In the animal diet. Ann. Anim. Sci ., 15, 2, 475–491. DOI: 10.2478/aoas-2014-0072.
  • 20. Larrea, M.A., Chang, Y.K. & Bustos, F.M. (2005). Effect of some operational extrusion parameters on the constituents of orange pulp. Food Chem . 89, 301–308. DOI: 10.1016/j.foodchem.2004.02.037.
  • 21. Vasanthan, T., Gaosong, J., Yeung, J. & Li, J. (2002). Dietary fiber profile of barley flours as affected by extrusion cooking. Food Chem . 77, 35–40. DOI: 10.1016/S0308-8146(01)00318-1.
  • 22. Kaisangsri, N., Kowalski, R.J., Wijesekara, I., Kerdchoechuen, O., Laohakunjit, N. & Ganjyal, G.M. (2016). Carrot pomace enhances the expansion and nutritional quality of corn starch extrudates. LWT – Food Sci. Technol. 68, 391–399. DOI: 10.1016/j.lwt.2015.12.016.
  • 23. Ainsworth, P., Ibanoglu, S., Plunkett, A., Ibanoglu, E., & Stojceska, V. (2007). Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. J. Food. Eng. 81, 702–709. DOI: 10.1016/j.jfoodeng.2007.01.004.
  • 24. Selani, M.M., Brazaca, S.G.C., dos Santos Dias, C.T., Ratnayake, W.S., Flores, R.A. & Bianchini, A. (2014). Characterization and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chem . 163, 23–30. DOI: 10.1016./jfoodchem.2014.04.076.
  • 25. Kumar, N., Sarkar, B.C. & Dharma, H.K. (2010). Development and characterization of extruded product using carrot pomace and rice flour. Int. J. Food Sci. Technol . 6, 1–24.
  • 26. Korkerd, S., Wanlapa, S., Puttanlek, C., Uttapap, D. & Rungsardthong, V. (2016). Expansion and functional properties of extruded snack enriched with nutrition sources from food processing by-products. J. Food Sci. Technol. 53(1), 561–570. DOI: 10.1007/s13197-015-2039-1.
  • 27. Ti, H., Zhang, R., Zhang, M., Wei, Z., Chi, J., Deng, Y. & Hang, Y. (2015). Effect of extrusion on phytochemical profiles in milled fractions of black rice. Food Chem ., 178 186–194. DOI: 10.1016/j.foodchem.2015.01.087.
  • 28. Zeng, Z., Luo, S., Liu, C., Hu, X., Gong, E., & Miao, J. (2018). Phenolic retention of brown rice after extrusion with mesophilic α –amylase, Food Biosci ., 21, 8–13. DOI: 10.1016/j.fbio.2017.10.008.
  • 29. Faraji, H. & Lindsay, R.C. (2004). Characterization of the antioxidant activity of sugars and polyhydric alcohols in fish oil emulsions. J. Agric. Food Chem ., 52 (23), 7164–7171. DOI: 10.1021/jf035291k.
  • 30. Lončarić, A., Pichler, A., Trtinjak, I., Piližota, V. & Kopjar, M. (2016). Phenolics and antioxidant activity of freeze-dried sour cherry puree with addition of disaccharides. LWT- Food Sci. Technol. , 73, 391–396. DOI: 10.1016/j.lwt.2016.06.040.
  • 31. Peinado, J., Lerma, N.L.D. & Peinado, R.A., (2010). Synergistic antioxidant interaction between sugars and phenolics from a sweet wine. Eur. Food Res.Technol ., 231 (3), 363–370. DOI: 10.1007/s00217-010-1279-6.
  • 32. Jakobek, L. Drenjancevic, M., Juki, V. & Seruga, M. (2012). Phenolic acids, flavonols, anthocyanins, and antiradical activity of “Nero”, “Viking”, “Galicianka” and wild chokeberries, Scientia Hortic . 147, 56–63. DOI: 10.1016/j.scienta.2012.09.006.
  • 33. Hirth, M., Preiβ, R., Mayer-Miebach, E. & Schuchmann, H.P. (2015). Influence of HTST extrusion cooking process parameters on the stability of anthocyanins, procyanidis and hydroxycinnamic acid as the main bioactive chokeberry polyphenols. LWT – Food Sci. Technol. , 62, 511–516. DOI: 10.1016/j.lwt.2014.08032.
  • 34. Sójka, M., & Król, B. (2009). Composition of industrial seedless black currant pomace. Eur. Food Res. Technol ., 228, 597–605, DOI: 10.1007/s00217-008-0968-x.
  • 35. Anttonen, M.J., & Karjalainen, R.O. (2006). High-performance liquid chromatography analysis of black currant (Ribes nigrum L.) fruit phenolics grown either conventionally or organically. J. Agric. Food Chem ., 54 (20), 7530–7538, DOI: 10.1021/jf0615350.
  • 36. Matsumoto, H., Hanamura, S., Kawakami, T., Sato, Y. & Hirayama, M. (2001). Preparative-scale isolation of four anthocyanin components of black currant (Ribes nigrum L.) fruits. J. Agric. Food Chem., 49 (3), 1541–1545, DOI: 10.1021/jf001245y.
  • 37. Ostrowska, B. & Rzemykowska, Z. (1998). Antioxidant activity of polyphenolic plant materials in the prevention and treatment of atherosclerosis. Herba Pol. , 4, 417–428 (in Polish).
  • 38. Zheng, W. & Wang, S. (2003). Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J. Agric. Food Chem . 51(2), 502–509. DOI:10.1021/jf020728u.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcfa00d0-e667-4976-8773-5f0aebc3155b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.