PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Terrestrial laser scanning in monitoring of anthropogenic objects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The registered xyz coordinates in the form of a point cloud captured by terrestrial laser scanner and the intensity values (I) assigned to them make it possible to perform geometric and spectral analyses. Comparison of point clouds registered in different time periods requires conversion of the data to a common coordinate system and proper data selection is necessary. Factors like point distribution dependant on the distance between the scanner and the surveyed surface, angle of incidence, tasked scan’s density and intensity value have to be taken into consideration. A prerequisite for running a correct analysis of the obtained point clouds registered during periodic measurements using a laser scanner is the ability to determine the quality and accuracy of the analysed data. The article presents a concept of spectral data adjustment based on geometric analysis of a surface as well as examples of geometric analyses integrating geometric and physical data in one cloud of points: cloud point coordinates, recorded intensity values, and thermal images of an object. The experiments described here show multiple possibilities of usage of terrestrial laser scanning data and display the necessity of using multi-aspect and multi-source analyses in anthropogenic object monitoring. The article presents examples of multisource data analyses with regard to Intensity value correction due to the beam’s incidence angle. The measurements were performed using a Leica Nova MS50 scanning total station, Z+F Imager 5010 scanner and the integrated Z+F T-Cam thermal camera.
Rocznik
Strony
347--364
Opis fizyczny
Bibliogr. 28 poz., wykr.
Twórcy
  • Warsaw University of Technology Faculty of Geodesy and Cartography Chair of Geodesy Engineering and Control-Measuring Systems pl. Politechniki 1, 00–661 Warsaw, Poland
autor
  • Warsaw University of Technology Faculty of Geodesy and Cartography Chair of Geodesy Engineering and Control-Measuring Systems pl. Politechniki 1, 00–661 Warsaw, Poland
Bibliografia
  • [1] Alberti, G., Boscutti, F., Pirotti, F., Bertacco, C., De Simon, G., Sigura, M., Cazorzi, F. and Bonfanti, P. (2013). A LiDAR-based approach for a multi-purpose characterization of Alpine forests: an Italian case study. iForest-Biogeosciences and Forestry, 6(3), 156-168, DOI: 10.3832/ifor0876-006.
  • [2] Bucksch, A., Lindenbergh, R. and Van Ree, J. (2007). Error budget of terrestrial laser scanning: Influence of the intensity remission of the scan quality. Siberia Proceedings 3D-NordOst, 1-8.Novosibirsk, Russia. 1-8.
  • [3] Crutchley, S. (2009). Using LiDAR in archaeological contexts: the English heritage experience and lessons learned. Laser Scanning for the Environmental Sciences(Ed. G.L. Heritage, A.R.G. Large). WileyBlackwell, 180-200.
  • [4] Hancock, C. M., Roberts, G. W., Bisby, L., Cullen, M. and Arbuckle, J. (2012). Detecting Fire Damaged Concrete Using Laser Scanning. Proceedings of FIG Working Week 2012, Roma, https://www.fig.net/resources/proceedings/fig_proceedings/fig2012/. (Accessed 1st August 2016).
  • [5] Jaboyedoff, M., Oppikofer, T., Abbelan, A., Derron, M-H., Loye, A., Metzger, R. and Pedrazzini, A. (2012). Use of LiDAR in landslide investigations: a review. Natural Hazards, 61 (1): 5-28, DOI: 10.1007/s11069-010-9634-2.
  • [6] Kaasalainen, S., Jaakkola, A., Kaasalainen, M., Krooks, A. and Kukko, A. (2011). Analysis of Incidence Angle and Distance Effects on Terrestrial Laser Scanner Intensity: Search for Correction Methods. Remote Sensing, 3(10), 2207-2221.
  • [7] Kaspar, M., Pospisil, J., stroner, M., Křemen, T. and Tejkal, M. (2004). Laser Scanning in Civil Engineering and Land Surveying. Editorship Vega spol. s ro Hradec Králové. Czech Republic: Vega s.r.o. 110. ISBN 80-900860-3-9.
  • [8] Kilian W. (2007). Współczesne metody diagnostyki masywnych konstrukcji betonowych. Infrastruktura i ekologia terenów wiejskich, 4(2)/2007: 77-85.
  • [9] Lerma García, J. L., Van Genechten, B. and Santana Quintero, M. (2008). 3D Risk Mapping. Theory and Practice on Terrestrial Laser Scanning. Training Material Based on Practical Applications. Universidad Politecnica de Valencia, Spain. 2008.
  • [10] Lichti, D.D. and Gordon, S.J. (2004). Error Propagation in Directly Georeferenced Terrestrial Laser Scanner Point Clouds for Cultural Heritage Recording. Proc. of FIG Working Week, Athens, Greece, May: 22-27.
  • [11] Milan, D. (2009). Terrestrial laser scan-derived topographic and roughness data for hydraulic modelling of gravel-bed rivers. Chapter 9 in Laser Scanning for the Environmental Sciences (Eds. G. L. Heritage and A.R.G. Large).Wiley-Blackwell.pages: 133-146.
  • [12] Mleczko, M., Mróz, M. and Sawicki, P. (2012). Podstawy teoretyczne i przegląd metod oraz algorytmów korekcji radiometryczno-topografi cznej radarowych obrazów satelitarnych. Archiwum Fotogrametrii, Kartografi i i Teledetekcji, 23: 303-314.
  • [13] Owerko, T., Kwartnik-Pruc, A., Kocierz, R., Kuras, P., Ortyl, Ł. and Długosz, M. (2013). Geomorphometric monitoring of active slopes and their impact on post-glacier lake in the Tatra mountains. 13th International Multidisciplinary Scientifi c GeoConference SGEM 2013 Conference Proceedings, June 16-22, 2013, 2.International Multidisciplinary Scientifi c GeoConference SGEM2013, 245-252.
  • [14] Rutkowska, G., Klepak O., Podawca K. (2013). Problemy strat ciepła w istniejących budynkach jednorodzinnych w kontekście błędów wykonawczych. Annual Set The Environment Protection, 2013: 2625-2639.
  • [15] Valzano, V., Bandiera, A. and Beraldin, J. A. (2005). Realistic Representations of Cultural Heritage Sites and Objects Through Laser Scanner Information. National Research Council of Canada, Ottawa. pages 1-12.
  • [16] Pesci, A. and Teza, G. (2008). Effects of surface irregularities on intensity data from laser scanning: an experimental approach. Annals of Geophysics, 51(5-6): 839-848.
  • [17] Pętlicki, M. and Kinnard, C. (2016). Calving of Fuerza Aérea Glacier (Greenwich Island, Antarctica) observed with terrestrial laser scanning and continuous video monitoring. Journal of Glaciology, 62(235), 835-846, DOI: 10.1017/jog.2016.72.
  • [18] Osińska-Skotak, K. (2007). Znaczenie korekcji radiometrycznej w procesie przetwarzania zdjęć satelitarnych.” Archiwum Fotogrametrii, Kartografi i i Teledetekcji 17, 2007.
  • [19] Pfeifer, N., Dorninger, P., Haring, A. and Fan, H. (2007). Investigating Terrestrial Laser Scanning Intensity Data: Quality and Functional Relations. Proceedings of VIII International Conference on Optical 3-D Measurement Techniques, Zürich, Switzerland. pages: 328-337.
  • [20] Rees, W.G. (2013). Physical Principles of Remote Sensing. Third Edition. Cambridge: Scott Polar Research Institute University of Cambridge, Cambridge University Press. 441 pages.
  • [21] Soudarissanane, S., Van Ree, J., Bucksch, A. and Lindenbergh, R. (2007). Error budget of terrestrial laser scanning: infl uence of the incidence angle on the scan quality. Proceedings 3D-NordOst, 2007. pages 1-8.
  • [22] Wróbel, A. (2010). Termografi a w pomiarach inwentarskich obiektów budowlanych (rozprawa habilitacyjna). Monografi e 209, AGH. Kraków.
  • [23] Voegtle, T. and Wakaluk, S. (2009). Effects on the measurements of the terrestrial laser scanner HDS 6000 (Leica) caused by different object materials. Proceedings of ISPRS Work 38 (2009): 68-74.
  • [24] Zaczek-Peplinska, J., Osińska-Skotak, K., Wujanz, D., and Kowalska, M. (2015a). Potential of image processing methods based on intensity values captured by TLS for surface condition assessment. (Eds. S. Sahinkaya and E. Kalipci), Digital Proceedings of ICOCEE - CAPPADOCIA2015, 1364-1372.
  • [25] Zaczek-Peplinska, J., Kowalska, M. and Nowak, E. (2015b). Selection of reference fi elds for statistical analysis of point clouds (TLS) in a process of technical condition assessment of concrete water dam. (Eds.S. Sahinkaya and E. Kalipci), Digital Proceedings of ICOCEE - CAPPADOCIA2015, 1373-1383.
  • [26] Zaczek-Peplinska, J., Kowalska, M., Nowak, E., Osińska-Skotak, K. (2015c). Metodyka wykonania oceny stanu powierzchni masywnej konstrukcji betonowej na podstawie klasyfi kacji obszarów jednorodnych chmur punktów (TLS). in J. Winter & A. Wita, J. Winter & A. Wita (Red.), Eksploatacja budowli piętrzących - diagnostyka i zapobieganie zagrożeniom (ss. 373-384). Instytut Meteorologii i Gospodarki Wodnej. Państwowy Instytut Badawczy, 2015.
  • [27] Zaczek-Peplinska, J., Osińska-Skotak, K., Wujanz, D. and Kołakowska, M. (2014). Analysis of the possibility for using the results of terrestrial laser scanning (TLS) measurements and classifi cation algorithms of images for the engineering structure surface condition assessment. Proceedings of the first Vertical Geology Conference, University of Lausanne. pages: 227-232.
  • [28] Zaczek-Peplinska, J. and Osińska-Skotak, K. (2012). Możliwości wykorzystania intensywności odbicia promienia laserowego do oceny stanu powierzchni betonowego obiektu hydrotechnicznego Chapter I.20 in Zapory - bezpieczeństwo i kierunki rozwoju, Instytut Meteorologii i Gospodarki Wodnej, Warszawa. pages: 204-217.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcf65e20-6d33-43a5-a2f8-62a0bdc190b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.