PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical calculation of rotating detonation chamber

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
ANSYS FLUENT 14 supplied the CFD tools used in the numerical calculation of rotating detonation combustion. During calculations, various fuel injection methods and configurations of combustion chamber were applied in an attempt to obtain stable and correct detonation propagation results in a separated fuel-air injection system (non-premixed combustion model). However, FLUENT was not originally designed for detonation combustion and the failure to achieve re-initiation of detonation after collision was always the core issue in the non-premixed combustion model. Thus, this paper mainly focuses on research into the behavior of stable continuously rotating detonation in premixed combustion cases. The analysis of stable continuously rotating detonation behaviors and structures was carried out with different boundary conditions and mesh cells. The pressures were measured by using a number of artificial sensors inserted near the chamber outside surface in various axial and/or circumferential directions. With those key results in the case of premixed combustion, we were able to comparably conclude that stable rotating detonation would also be generated if the refilling process were properly exhibited in non-premixed combustion. The paper finishes with evaluations and conclusions regarding general detonation behaviors and performances.
Rocznik
Strony
314--326
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00-665 Warsaw, Poland
Bibliografia
  • [1] D. L. Chapman, Vi. on the rate of explosion in gases, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47 (284) (1899) 90–104.
  • [2] E. Jouguet, Sur la propagation des réactions chimiques dans les gaz, J. Math. Pures Appl 1 (1905) 347–425.
  • [3] B. V. Voitsekhovskii, V. V. Mitrofanov, M. E. Topchiyan, Structure of the detonation front in gases, Izdatielstvo SO AN SSSR.
  • [4] J. A. Nicholls, H. R. Wilkinson, R. B. Morrison, Intermittent detonation as a thrust-producing mechanism, Journal of jet propulsion 27 (5) (1957) 534–541.
  • [5] A. Tobita, T. Fujiwara, P. Wolanski, Detonation engine and flying object provided therewith, uS Patent 7,784,267 (Aug. 31 2010).
  • [6] F. A. Bykovskii, V. V. Mitrofanov, E. F. Vedernikov, Continuous detonation combustion of fuel-air mixtures, Combustion, Explosion and Shock Waves 33 (3) (1997) 344–353.
  • [7] F. A. Bykovskii, S. A. Zhdan, E. F. Vedernikov, Continuous spin detonation in annular combustors, Combustion, Explosion, and Shock Waves 41 (4) (2005) 449–459.
  • [8] F. A. Bykovskii, S. A. Zhdan, E. F. Vedernikov, Continuous spin detonation of hydrogen-oxygen mixtures. 1. annular cylindrical combustors, Combustion, Explosion, and Shock Waves 44 (2) (2008) 150–162.
  • [9] F. A. Bykovskii, E. F. Vedernikov, Continuous detonation of a subsonic flow of a propellant, Combustion, Explosion, and Shock Waves 39 (3) (2003) 323–334.
  • [10] P. Wolanski, J. Kindracki, T. Fujiwara, An experimental study of small rotating detonation engine, Pulsed and continuous detonations (2006) 332–338.
  • [11] J. Kindracki, P. Wolanski, Z. Gut, Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures, Shock waves 21 (2) (2011) 75–84.
  • [12] M. Hishida, T. Fujiwara, P. Wolanski, Fundamentals of rotating detonations, Shock waves 19 (1) (2009) 1–10.
  • [13] T. Yamada, K. Hayashi, N. Tsuboi, E. Yamada, V. Tangirala, T. Fujiwara, Numerical analysis of threshold of limit detonation in rotating detonation engine, in: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010, p. 153.
  • [14] S. Liu, Z. Lin, W.-D. Liu, W. Lin, Research on continuous rotating detonation wave propagation process (ii): Two-wave collision propagation mode, Tuijin Jishu/Journal of Propulsion Technology 35 (2) (2014) 269–275.
  • [15] R. Zhou, J.-P. Wang, Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines, Combustion and Flame 159 (12) (2012) 3632–3645.
  • [16] F. Falempin, E. Daniau, N. Getin, F. Bykovskii, S. Zhdan, Toward a continuous detonation wave rocket engine demonstrator, in: 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006, p. 7956.
  • [17] V. Mikhailov, M. Topchiyan, Studies of continuous detonation in an annular channel, Fizika Goreniya I Vzryva 1 (4) (1965) 20–23.
  • [18] D. Schwer, K. Kailasanath, Numerical study of the effects of engine size n rotating detonation engines, in: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2011, p. 581.
  • [19] S. A. Zhdan, A. M. Mardashev, V. V. Mitrofanov, Calculation of the flow of spin detonation in an annular chamber, Combustion, Explosion, and Shock Waves 26 (2) (1990) 210–214.
  • [20] C. Nordeen, D. Schwer, F. Schauer, J. Hoke, B. Cetegen, T. Barber, Thermodynamic Modeling of a Rotating Detonation Engine, in: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics, 2011. doi:doi:10.2514/6.2011-803. URL http://dx.doi.org/10.2514/6.2011-803
  • [21] M. Folusiak, A. Kobiera, P. Wolanski, Rotating detonation engine simulations in-house code-reflops, Prace Instytutu Lotnictwa (2010) 3–23.
  • [22] J. Wang, Research progress on crde at peking university, Tech. rep., Center for Combustion and Propulsion. Peking University (2009).
  • [23] J. Kindracki, Badania eksperymentalne i symulacje numeryczne procesu wirującej detonacji gazowej, Ph.D. thesis, Warsaw University of Technology (2008).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcf4efb7-36ba-4b1a-8f6f-83a67159faff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.