PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trajectory tracking and collision avoidance for the formation of two-wheeled mobile robots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents control method for multiple two-wheeled mobile robots moving in formation. Trajectory tracking algorithm from [7] is extended by collision avoidance, and is applied to the different type of formation task: each robot in the formation mimics motion of the virtual leader with a certain displacement. Each robot avoids collisions with other robots and circular shaped, static obstacles existing in the environment. Artificial potential functions are used to generate repulsive component of the control. Stability analysis of the closed-loop system is based on Lyapunov-like function. Effectiveness of the proposed algorithm is illustrated by simulation results.
Rocznik
Strony
915--924
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznan, Poland
  • Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznan, Poland
Bibliografia
  • [1] G. Leitmann and J. Skowronski, Avoidance Control, J. Optim. Theory Appl. 23(4), 581‒591, 1977.
  • [2] G. Leitmann, Guaranteed Avoidance Strategies, J. Optim. Theory Appl. 32(4), 569–576, 1980.
  • [3] K. Do, Formation Tracking Control of Unicycle-Type Mobile Robots with Limited Sensing Ranges, IEEE Transactions on Control Systems Technology 16(3), 527–538, 2008.
  • [4] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robots, The International Journal of Robotics Research5(1), 90–98, 1986.
  • [5] H. K. Khalil, Nonlinear Systems, 3rd ed. New York, NY, USA, Prentice-Hall, 2002.
  • [6] A. Loria, E. Panteley, and A.Teel, Relaxed persistency of excitation for uniform asymptotic stability, IEEE Trans. Autom. Con-trol (46)12, 1363–1368, December 2001.
  • [7] A. Loria, J. Dasdemir, and N. Alvarez Jarquin, Leader—Fol-lower Formation and Tracking Control of Mobile Robots Along Straight Paths, IEEE Transactions on Control Systems Technology 24(2), 727–732, March 2016, DOI: 10.1109/TCST.2015.2437328.
  • [8] S. Mastellone, D. Stipanovic, and M. Spong, Formation control and collision avoidance for multi-agent non-holonomic systems: Theory and experiments, The International Journal of Robotics Research, pp. 107‒126, 2008.
  • [9] W. Kowalczyk, M. Michałek, and K. Kozłowski, Trajectory tracking control with obstacle avoidance capability for unicycle-like mobile robot, Bull. Pol. Ac.: Tech. 60(3), 537–546, 2012.
  • [10] W. Kowalczyk, M. Przybyła, and K Kozłowski, Saddle point detection of the navigation function in nonholonomic mobile robot control, 21st International Conference on Methods and Models in Automation and Robotics, pp. 936–941, Miedzyzdroje, 2016.
  • [11] D.V. Dimarogonasa, S.G. Loizoua, K.J. Kyriakopoulos, and M.M. Zavlanosb, A Feedback Stabilization and Collision Avoidance Scheme for Multiple Independent Non-point Agents, Auto-matica 42(2), 229–243, 2005.
  • [12] I. Filippidis and K.J. Kyriakopoulos, Adjustable Navigation Functions for Unknown Sphere Worlds, IEEE Conference on Decision and Control and European Control Conference (CDCECC), pp. 4276‒4281, 2011.
  • [13] G. Roussos and K.J. Kyriakopoulos, Decentralized and Prioritized Navigation and Collision Avoidance for Multiple Mobile Robots, Distributed Autonomous Robotic Systems – Springer Tracts in Advanced Robotics 83, pp. 189–202, 2013
  • [14] G. Roussos and K.J. Kyriakopoulos, Completely Decentralised Navigation of Multiple Unicycle Agents with Prioritisation and Fault Tolerance, IEEE Conference on Decision and Control (CDC), pp. 1372‒1377, 2010.
  • [15] G. Roussos and K.J. Kyriakopoulos, Decentralized Navigation and Conflict Avoidance for Aircraft in 3-D Space, IEEE Trans-actions on Control Systems Technology 20(6), 1622‒1629, Novemer 2012.
  • [16] E. Rimon and D.E. Koditschek, The Construction of Analytic Diffeomorphisms for Exact Robot Navigation on Star Worlds, Transactions of the American Mathematical Society 327(1), 71–116, 1991.
  • [17] E. Rimon and D. Koditschek, Exact Robot Navigation Using Artificial Potential Functions, IEEE Transactions on Robotics and Automation 8(5), 501–518, 1992
  • [18] W. Kowalczyk, K. Kozlowski, and J.K. Tar, Trajectory tracking for multiple unicycles in the environment with obstacles, 19th International Workshop on Robotics in Alpe-Adria-Danube Region (RAAD 2010), Budapest, 2010, pp. 451‒456, DOI: 10.1109/RAAD.2010.5524544.
  • [19] W. Kowalczyk and K. Kozłowski, Leader-Follower Control and Collision Avoidance for the Formation of Differentially-Driven Mobile Robots, MMAR 2018 – 23rd International Conference on Methods and Models in Automation and Robotics, 27‒30 August 2018, Międzyzdroje, Poland.
  • [20] T. Mylvaganam and M. Sassano, Autonomous collision avoidance for wheeled mobile robots using a differential game approach, European Journal of Control 40, pp. 53‒61, 2018, https://doi.org/10.1016/j.ejcon.2017.11.005.
  • [21] I. Harmati and K. Skrzypczyk, Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework, Robotics and Autonomous Systems 57(1), 75‒86, 2009, https://doi.org/10.1016/j.robot.2008.02.004.
  • [22] I. Khoufi, P. Minet, M. Koulali, and M. Erradi, “A game theo-rybased approach for robots deploying wireless sensor nodes,” 2015 International Wireless Communications and Mobile Computing Conference (IWCMC), Dubrovnik, 2015, pp. 557‒562, DOI: 10.1109/IWCMC.2015.7289144.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcf31b6a-fc1f-497b-988a-f90da8c3f86a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.