PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional calculus for continuum mechanics – anisotropic non-locality

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a generalisation of previous author’s formulation of fractional continuum mechanics for the case of anisotropic non-locality is presented. The discussion includes a review of competitive formulations available in literature. The overall concept is based on the fractional deformation gradient which is non-local due to fractional derivative definition. The main advantage of the proposed formulation is its structure, analogous to the general framework of classical continuum mechanics. In this sense, it allows to define similar physical and geometrical meaning of introduced objects. The theoretical discussion is illustrated by numerical examples assuming anisotropy limited to single direction.
Rocznik
Strony
361--372
Opis fizyczny
Bibliogr. 67 poz., wykr., rys.
Twórcy
autor
  • Institute of Structural Engineering, Poznań University of Technology, Piotrowo 5 St., 60-969 Poznań, Poland
Bibliografia
  • [1] J. Pamin. Gradient-enhanced continuum models: formulation, discretization and applications, volume 301, Publishing House of the Cracow University of Technology, Cracow, 2004.
  • [2] R.A. Toupin, Elastic materils with couple-stress, Archive for Rational Mechanics and Analysis, 11(1):385-414, 1962.
  • [3] R.D. Mindlin, Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures, 1(4):417-438, 1965.
  • [4] A.C. Eringen, Mechanics of Continua, J. Wiley & Sons, New York, 1967.
  • [5] O.W. Dillon and Kratochvil. A strain gradient theory of plasticity. International Journal of Solids and Structures, 6(12):1513-1533, 1970.
  • [6] Y.F. Dafalias, Elasto-plastic coupling within a thermodynamic strain space formulation of plasticity. International Journal of Non-Linear Mechanics, 12(5):327-337, 1977.
  • [7] Z.P. Bazant and S.S. Kim. Plastic-fracturing theory for concrete. Journal of the Engineering Mechanics Division, 105(3):407-428, 1979.
  • [8] G.A. Maugin. Nonlocal theories or gradient-type theories - a matter of convenience? Archives of Mechanics, 31(1):15-26, 1979.
  • [9] E.C. Aifantis. On the role of gradients in the localization of deformation and fracture. International Journal of Engineering Science, 30(10):1279-1299, 1992.
  • [10] N.A. Fleck and J.W. Hutchinson. Strain gradient plasticity. Advances in Applied Mechanics, 33, 295-361, 1997.
  • [11] M.G.D. Geers. Experimental Analysis and Computational Modelling of Damage and Fracture. Eindhoven University of Technology, Eindhoven, 1997.
  • [12] S. Cuenot, S. Demoustier-Champagne, and B. Nysten. Elastic modulus of polypyrrole nanotubes. Physical Review Letters, 85(8):1690-1693, 2000.
  • [13] F. Yang, A.C.M. Chong, D.C.C. Lam, and P. Tong. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10):2731-2743, 2002.
  • [14] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, and P. Tong. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(8):1477-1508, 2003.
  • [15] B. Ji and W. Chen, A new analytical solution of pure bending beam in couple stress elastoplasticity: Theory and applications. International Journal of Solids and Structures, 47, 779-785, 2010.
  • [16] C. Liebold and W.H. Müller. Generalized Continua as Models for Materials, volume 22, chapter Measuring material coefficients of higher gradient elasticity by using AFM techniques and Raman- spectroscopy, pages 255-271. Springer, 2013.
  • [17] J. Peddieson, G.R. Buchanan, and R.P. McNitt. The role of strain gradients in the grain size effect for polycrystals. International Journal of Engineering Science, 41, 305-312, 2003.
  • [18] A.C. Eringen. Nonlocal Continuum Field Theories. Springer, New York, 2010.
  • [19] R.D. Mindlin and N.N. Eshel. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, 4:109-124, 1968.
  • [20] A.C. Eringen. Linear theory of micropolar elasticity. J. Math. Mech., 15:909-923, 1966.
  • [21] W. Nowacki. Theory of Micropolar Elasticity, CISM, Udine, 1972.
  • [22] M.E. Gurtin and A.I. Murdoch. A continuum theory of elastic material surfaces. Arch. Ration. Mech. An., 57(4):291-323, 1975.
  • [23] M. Klimek. Fractional sequential mechanics-models with symmetric fractional derivative. Czechoslovak Journal of Physics, 51(12):1348-1354, 2001.
  • [24] L. Vazquez. A fruitful interplay: from nonlocality to fractional calculus. In F.Kh. Abdullaev and V.V. Konotop, editors, Nonlinear Waves: Classical and Quantum Aspects, page 129-133. 2004.
  • [25] K.A. Lazopoulos. Non-local continuum mechanics and fractional calculus. Mechanics Research Communications, 33:753-757, 2006.
  • [26] E. Kuhl, E. Ramm, and R. de Borst. An anisotropic gradient damage model for quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering, 183(1‒2):87-103, 2000.
  • [27] H. Stumpf and J. Saczuk. On a general concept for the analysis of crack growth and material damage. International Journal of Plasticity, 17(7):991-1028, 2001.
  • [28] N. Germain, J. Besson, and F. Feyel. Composite layered materials: Anisotropic nonlocal damage models. Computer Methods in Applied Mechanics and Engineering, 196(41‒44):4272-4282, 2007.
  • [29] R.K. Abu Al-Rub and G.Z. Voyiadjis. Gradient-enhanced coupled plasticity-anisotropic damage model for concrete fracture: Computational aspects and applications. International Journal of Damage Mechanics, 18(2):115-154, 2009
  • [30] V. Alastrue, M.A. Martínez, M. Doblare, and A. Menzel. Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling. Journal of the Mechanics and Physics of Solids, 57(1):178-203, 2009.
  • [31] P. Perzyna, The thermodynamical theory of elasto-viscoplasticity accounting for microshear banding and induced anisotropy effects. Mechanics, 27(1):25-42, 2008.
  • [32] A. Glema, T. Łodygowski, and W. Sumelka. Nowacki’s double shear test in the framework of the anisotropic thermo-elasto-vicsoplastic material model. Journal of Theoretical and Applied Mechanics, 48(4):973-1001, 2010.
  • [33] W. Sumelka and T. Łodygowski. Reduction of the number of material parameters by ann approximation. Computational Mechanics, 52:287-300, 2013.
  • [34] A. Needleman. Material rate dependence and mesh sensitivityin localization problems. Computer Methods in Applied Mechanics and Engineering, 67:69-85, 1988.
  • [35] W. Sumelka. Fractional deformation gradients. In: 7th International Workshop on Dynamic Behaviour of Materials and its Applications in Industrial Processes, pages 54-55, Madrid, Spain, 8‒10 May 2013.
  • [36] W. Sumelka. Thermoelasticity in the framework of the fractional continuum mechanics. Journal of Thermal Stresses, 37(6):678-706, 2014.
  • [37] M. Frewer. More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mechanica, 202(1‒4):213-246, 2009.
  • [38] C.S. Drapaca and S. Sivaloganathan. A fractional model of continuum mechanics. Journal of Elasticity, 107, 107-123, 2012.
  • [39] M. Di Paola, G. Failla, and M. Zingales. Physically-based approach to the mechanics of strong non-local linear elasticity theory Journal of Elasticity, 97(2):103-130, 2009.
  • [40] T.M. Atanackovic and B. Stankovic. Generalized wave equation in nonlocal elasticity. Acta Mechanica, 208(1‒2):1-10, 2009.
  • [41] A. Carpinteri, P. Cornetti, and A. Sapora. A fractional calculus approach to nonlocal elasticity. European Physical Journal Special Topics, 193, 193-204, 2011.
  • [42] I. Podlubny. Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, 5(4):367-386, 2002.
  • [43] A. Carpinteri and F. Mainardi. Fractals and Fractional Calculus in Continuum Mechanics, Springer, New York, 1997.
  • [44] A. Carpinteri and P. Cornetti. A fractional calculus approach to the description of stress and strain localization in fractal media. Chaos, Solitons and Fractals, 13:85-94, 2002.
  • [45] V.E. Tarasov. Continuous medium model for fractal media. Physics Letters A, 336:167-174, 2005.
  • [46] V.E. Tarasov. Fractional hydrodynamic equations for fractal media. Annals of Physics, 318(2):286-307, 2005.
  • [47] M. Ostoja-Starzewski. Towards thermomechanics of fractal media. Journal of Applied Mathematics and Physics (ZAMP), 58:1085-1096, 2007.
  • [48] A.S. Balankin. Stresses and strains in a deformable fractal medium and in its fractal continuum model. Physics Letters A, 377:2535-2541, 2013.
  • [49] I. Podlubny. Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, 1999.
  • [50] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo. Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
  • [51] E.C. Oliveira and J.A.T. Machado. A review of definitions for fractional derivatives and integral. Mathematical Problems in Engineering, 2014(Article ID 238459):6 pages, 2014.
  • [52] T.M. Atanackovic, S. Pilipovic, B. Stankovic, and D. Zorica. Fractional Calculus with Applications in Mechanics, Wiley, 2014. ISBN 978-1-84821-679-2.
  • [53] A.C. Eringen. On differential equations of nonlocal elasticity and solutions of screw dislocations and surface waves. Journal of Applied Physics, 54:4703-4710, 1983.
  • [54] A. Carpinteri, P. Cornetti, and A. Sapora. Nonlocal elasticity: an approach based on fractional calculus, Meccanica, 49(11):2551-2569, 2014.
  • [55] S. Silling. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48:175-209, 2000.
  • [56] S.G. Samko, A.A. Kilbas, and O.I. Marichev. Fractional integrals and derivatives: theory and applications, Gordon and Breach, Amsterdam, 1993.
  • [57] J.S. Leszczyński. An introduction to fractional mechanics. Monographs No 198. The Publishing Office of Czestochowa University of Technology, 2011.
  • [58] G.S.F. Frederico and D.F.M. Torres. Fractional Noether’s theorem in the Riesz-Caputo sense. Applied Mathematics and Computation, 217:1023-1033, 2010.
  • [59] W. Feller. On a Generalization of Marcel Riesz’ potentials and the semigroups generated by them. The Marcel Riesz Memorial volume, pages 73-81, 1952. Lund.
  • [60] W. Sumelka and T. Blaszczyk. Fractional continua for linear elasticity. Archives of Mechanics, 66(3):147-172, 2014.
  • [61] W. Sumelka, K. Szajek, and T. Łodygowski. Plane strain and plane stress elasticity under fractional continuum mechanics. Archive of Applied Mechanics, 89(9):1527-1544, 2015. DOI:10.1007/s00419-014-0949-4.
  • [62] W. Sumelka. Non-local kirchhoff-love plates in terms of fractional calculus. Archives of Civil and Mechanical Engineering, 2014. DOI:10.1016/j.acme.2014.03.006.
  • [63] W. Sumelka. Application of fractional continuum mechanics to rate independent plasticity. Acta Mechanica, 255(11):3247-3264, 2014.
  • [64] P. Haupt. Continuum Mechanics and Theory of Materials, Springer, second edition, 2002.
  • [65] Z. Odibat. Approximations of fractional integrals and Caputo fractional derivatives. Applied Mathematics and Computation, 178:527-533, 2006.
  • [66] D.W. Brzeziński and P. Ostalczyk. High-accuracy numerical integration methods for fractional order derivatives and integrals computations. Bulletin of the Polish Academy of Sciences Technical Sciences, 62(4):723-733, 2014.
  • [67] P. Ostalczyk. Remarks on five equivalent forms of the fractional - order backward - difference. Bulletin of the Polish Academy of Sciences Technical Sciences, 62(2):271-278, 2014.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bce9ad36-5d31-4440-9b49-5662e2cdb099
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.