Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the results of a study on the water absorption capacity and solubility of biodegradable starch foams produced with single-screw extruder TS-45 with L/D=12. Two different moulding dies were used: one with a circular hole with the diameter of 3 mm and one with a ring hole with the inner diameter of 5 mm. During the extrusion process, the temperature of the cylinder ranged from 80 to 130°C and the screw speeds applied were: 100 and 130 rpm. For the application of the ring die, it was observed that regardless of the speed of the screw, the use of the raw material of higher moisture content led to the production of materials with higher solubility. As a result, the obtained materials revealed solubility at a level of 40%. The results demonstrate good solubility of the starchy fillers of the packaging, which may indicate their susceptibility to decomposition in the conditions of high ambient humidity. A statistical analysis showed a significant impact of moisture of the raw material on the WSI of starch foams used irrespective of the other parameters of the extrusion-cooking process. The raw material moisture had a significant effect on the water absorption capacity of only TPS foams produced in the ring die at the screw speed of 100 rpm.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
184--189
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
autor
- Department of Food Process Engineering, University of Life Sciences in Lublin, Doświadczalna 44 St., 20-280 Lublin, Poland
autor
- Department of Food Process Engineering, University of Life Sciences in Lublin, Doświadczalna 44 St., 20-280 Lublin, Poland
autor
- Department of Food Process Engineering, University of Life Sciences in Lublin, Doświadczalna 44 St., 20-280 Lublin, Poland
autor
- Department of Food Process Engineering, University of Life Sciences in Lublin, Doświadczalna 44 St., 20-280 Lublin, Poland
autor
- Department of Food Process Engineering, University of Life Sciences in Lublin, Doświadczalna 44 St., 20-280 Lublin, Poland
autor
- Department of Food Process Engineering, University of Life Sciences in Lublin, Doświadczalna 44 St., 20-280 Lublin, Poland
autor
- POL-FOODS Sp. z o.o., Kolejowa 1d St., 19-335 Prostki, Poland
autor
- Institute of Biosystems Engineering, University of Life Sciences in Poznań, Wojska Polskiego 50 St., 60-637 Poznań, Poland
autor
- Department of Food Process Engineering, University of Life Sciences in Lublin, Doświadczalna 44 St., 20-280 Lublin, Poland
Bibliografia
- 1. Bastioli C. 2005. Handbook of Biodegradable Polymers. Rapra Technology Limited, UK.
- 2. Chaudhary A.L., Miler M., Torley P.J., Sopade P.A., Halley P.J. 2008. Amylose content and chemical modification effects on the extrusion of thermoplastic starch from maize. Carbohydrate Polymers, 74, 907–913.
- 3. Cinelli P., Chiellini E., Lawton J.W., Imam S.H. 2006. Foamed articles based on potato starch, corn fibers and poly(vinyl alcohol). Polymer Degradation and Stability, 91, 1147–1155.
- 4. Combrzyński M., Mitrus M., Mościcki L., Oniszczuk T., Wójtowicz A. 2012. Selected aspects of thermoplastic starch production. TEKA Commission of Motorization and Energetics in Agriculture, 12(1), 25–29.
- 5. Janssen L.P.B.M., Moscicki L. (Eds.). 2011. Thermoplastic Starch. WILEY-VCH Verlag GmbH& Co. KGaA, Weinheim, Germany.
- 6. Lawton J.W., Shogren R.L., Tiefenbacher K.F. 2004. Aspen fiber addition improves the mechanical properties of baked cornstarch foams. Industrial Crops and Products, 19(1), 41–48.
- 7. Mitrus M., Moscicki L. 2014. Extrusion-cooking of starch protective loose-fill foams. Chemical Engineering Research and Design, 92, 778–783.
- 8. Nabar Y.U., Draybuck D., Narayan R. 2006 Physicomechanical and hydrophobic properties of starch foams extruded with different biodegradable polymers. Journal of Applied Polymer Science, 102, 58–68.
- 9. Nabar Y., Narayan R. 2006. Analysis of the dynamic behavior of a starch foam extrusion process. Journal of Applied Polymer Science, 101, 3983–3995.
- 10. Oniszczuk T., Mitrus M., Wójtowicz A., Mościcki L. 2015. Addition of bark in the production of the starch-based composites. Przemysł Chemiczny, 94(10), 1748–1751.
- 11. Parra D.F., Carr L.G., Ponce P., Tadini C.C., Lugão A.B. 2006. Biodegradable foams made of cassava starch and fibers: Influence in the mechanical properties. Proceedings of the 2nd CIGR Section VI International Symposium on Future of Food Engineering, 26–28 April 2006, Warsaw, Poland.
- 12. Pushpadass H.A., Suresh Babu S.G., Weber R.W., Hanna M A. 2008. Extrusion of starch-based loose-fill packaging foams: effects of temperature, moisture and talc on physical properties. Packaging Technology and Science, 21, 171–183.
- 13. Salgado P.R., Schmidt V.C., Molina Ortiz S.E., Mauri A.N., Laurindo J.B. 2008. Biodegradable foams based on cassava starch, sunflower proteins and cellulose fibers obtained by a baking process Journal of Food Engineering, 85, 435–443.
- 14. Shogren R.L., Lawton J.W., Tiefenbacher K.F. 2002. Baked starch foams: starch modifications and additives improve process parameters, structure and properties. Industrial Crops and Products, 16, 69–79.
- 15. Sivertsen K. 2007. Polymer Foams. Polymer Physics, Spring, Massachusetts Institute of Technology, USA.
- 16. Soykeabkaew N., Supaphol P., Rujiravanit R. 2004. Preparation and characterization of jute- and flax-reinforced starch-based composite foams. Carbohydrate Polymers, 58, 53–63.
- 17. Tatarka P.D., Cunningham R. L. 1998. Properties of protective loose-fill foams. Journal of Applied Polymer Science, 67, 1157–1176
- 18. Thomas D.J., Atwell W.A. 1999. Starches. Eagan®Press, St. Paul, Minnesota, USA.
- 19. Van Tuil R., Van Heemst J., Schennink G. 2001. Potato Starch Based Resilient Thermoplastic Foams. In: Chiellini E., Gil H., Braunegg G., Buchert J., Gatenholm P., van der Zee M (Eds.): Biorelated Polymers: Sustainable Polymer Science and Technology. Kluwer Academic, 3–17, New York, USA.
- 20. Vaverková M.D., Adamcowá D. 2015. Biodegrability of bioplastic materials in a controlled composting environment. Journal of Ecological Engineering, 16(3), 155–160.
- 21. Wang L., Ganjyal G.M., Jones D.D., Weller C.L., Hanna M.A. 2005. Modeling of bubble growth dynamics and nonisothermal expansion in starch-based foams during extrusion. Advances in Polymer Technology, 24(1), 29–45.
- 22. Willett J.L., Shogren R.L. 2002. Processing and properties of extruded starch/polymer foams. Polymer, 43, 5935–5947.
- 23. Xu Y.X., Dzenis Y., Hanna M.A. 2005. Water solubility, thermal characteristics and biodegradability of extruded starch acetate foams. Industrial Crops and Products, 21(3), 361–368.
- 24. Yang Z., Graiver D., Narayan R. 2013. Extrusion of humidity-resistant starch foam sheets. Polymer Engineering and Science, 53(4), 857–867
- 25. Zhang J.F., Sun X. 2007. Biodegradable foams of poly(lactic acid)/starch. II. Cellular structure and water resistance. Journal of Applied Polymer Science, 106, 3058–3062.
- 26. Zhou J., Song J., Parker R. 2006. Structure and properties of starch-based foams prepared by microwave heating from extruded pellets. Carbohydrate Polymers, 63, 466–475
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bce8d58c-9d5d-435a-8a38-79de7d514c55