PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of a hybrid manual - electric wheelchair propulsion system on the user's muscular effort

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Self-propelled wheelchairs favour the rehabilitation process, forcing the user to be physically active. Unfortunately, in most cases, the manual propulsion is not adapted to the individual needs and physical capabilities of the user. This paper presents the results of operational tests of a wheelchair equipped with a hybrid propulsion system in which the muscle strength generated by the user is assisted by two independent electric motors. The research aimed to investigate the influence of the applied control algorithm and the assistance factor (W) on the value of the muscular effort (MA) while propelling the wheelchair with the use of push rims. A modified ARmedical AR-405 wheelchair equipped with two MagicPie 5 electric motors built into the wheelchair’s hubs with a power of 500 W was used in this research. The tests were carried out on a wheelchair test bench simulating the moment of resistance within the range of 8–11 Nm. Surface electromyography was employed for the measurement of MA, specifically, a four-channel Noraxon Mini DTS apparatus. The research was carried out on five patients from the group of C50 anthropometric dimensions. The effort was measured for four muscles: deltoid–anterior part, deltoid–posteriori part, and triceps brachii and extensor carpi radialis longus. The effectiveness of the hybrid propulsion system was observed based on the extensor carpi radialis longus muscle. In this case, for the standard wheelchair, the MA ranged from 93% to 123%. In contrast, for a wheelchair equipped with the hybrid propulsion system, at W = 70%, the MA was within the range of 43%–75%.
Rocznik
Strony
28--34
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
  • Faculty of Mechanical Engineering, Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
  • Faculty of Mechanical Engineering, Institute of Machine Design, Poznań University of Technology, ul. Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • 1. Hinderer M, Friedrich P, Wolf B. An autonomous stair-climbing wheelchair. Robot Auton Syst. 2017;94:219–25.
  • 2. Sasaki K, Eguchi Y, Suzuki K. Stair-climbing wheelchair with lever propulsion control of rotary legs. Adv Robot. 2020;34(12):802–13.
  • 3. Favey C, Farcy R, Donnez J, Villanueva J, Zogaghi A. Development of a New Negative Obstacle Sensor for Augmented Electric Wheelchair. Sensors. 2021;21(19):6341.
  • 4. Wu BF, Chen YS, Huang CW, Chang PJ. An Uphill Safety Controller With Deep Learning-Based Ramp Detection for Intelligent Wheelchairs. IEEE Access. 2018;6:28356–71.
  • 5. Nonaka M, Kashiwazaki H, Ura S, Nagamori M, Uchiyama H, Shionoya A. Evaluation of Driving Performance of Two Types of Competitive Wheelchairs for Badminton Made of Two Different Metallic Materials. Proceedings. 2020;49(1):161.
  • 6. New design and development of a manual wheelchair for India. Disability and Rehabilitation. 2018 29(11): 56–78
  • 7. Quaglia G, Bonisoli E, Cavallone P. The Design of a New Manual Wheelchair for Sport. Machines. czerwiec 2019;7(2):31.
  • 8. Rozendaal LA, Veeger HEJ, van der Woude LHV. The push force pattern in manual wheelchair propulsion as a balance between cost and effect. J Biomech. 1 luty 2003;36(2):239–47.
  • 9. Lee J, Jeong W, Han J, Kim T, Oh S. Barrier-Free Wheelchair with a Mechanical Transmission. Appl Sci. styczeń 2021;11(11):5280.
  • 10. Madanhire I, Gwizo T, Mbohwa C. Design Improvement of Off-road Rough Uneven Rural Terrain Wheelchair. :14.
  • 11. Sivakanthan S, Castagno J, Candiotti JL, Zhou J, Sundaram SA, Atkins EM, i in. Automated Curb Recognition and Negotiation for Robotic Wheelchairs. Sensors. 2021;21(23):7810.
  • 12. Maule L, Luchetti A, Zanetti M, Tomasin P, Pertile M, Tavernini M, i in. RoboEye, an Efficient, Reliable and Safe Semi-Autonomous Gaze Driven Wheelchair for Domestic Use. Technologies. 2021;9(1):16.
  • 13. van der Woude LHV, de Groot S, Janssen TWJ. Manual wheelchairs: Research and innovation in rehabilitation, sports, daily life and health. Med Eng Phys. 2006;28(9):905–15.
  • 14. Yang YS, Koontz AM, Hsiao YH, Pan CT, Chang JJ. Assessment of Wheelchair Propulsion Performance in an Immersive Virtual Reality Simulator. Int J Environ Res Public Health. 2021;18(15):8016.
  • 15. Guillon B, Van-Hecke G, Iddir J, Pellegrini N, Beghoul N, Vaugier I, i in. Evaluation of 3 Pushrim-Activated Power-Assisted Wheelchairs in Patients With Spinal Cord Injury. Arch Phys Med Rehabil. 2015;96(5):894–904.
  • 16. Kloosterman MGM, Eising H, Schaake L, Buurke JH, Rietman JS. Comparison of shoulder load during power-assisted and purely hand-rim wheelchair propulsion. Clin Biomech. 2012;27(5):428–35.
  • 17. Antonelli MG, Alleva S, Beomonte Zobel P, Durante F, Raparelli T. Powered off-road wheelchair for the transportation of tetraplegics along mountain trails. Disabil Rehabil Assist Technol. 2019;14(2):172–81.
  • 18. Wieczorek B, Warguła Ł, Rybarczyk D. Impact of a Hybrid Assisted Wheelchair Propulsion System on Motion Kinematics during Climbing up a Slope. Appl Sci. 2020;10(3):1025.
  • 19. Shionoya A, Kenmotsu Y. Development of New Wheel-Chair for Sports Competition. Proceedings. 2018;2(6):257.
  • 20. Oh S, Kong K, Hori Y. Operation state observation and condition recognition for the control of power-assisted wheelchair. Mechatronics. 2014;24(8):1101–11.
  • 21. Oh S, Hori Y. Disturbance Attenuation Control for Power-Assist Wheelchair Operation on Slopes. IEEE Trans Control Syst Technol. 2014;22(3):828–37.
  • 22. Hu C, Qin Y, Cao H, Song X, Jiang K, Rath JJ, i in. Lane keeping of autonomous vehicles based on differential steering with adaptive multivariable super-twisting control. Mech Syst Signal Process. 2019;125:330–46.
  • 23. Nazaruddin, Adhitya M, Sumarsono DA, Siregar R, Heryana G. Review of electric power steering type column steering with booster motor and future research for EV-Bus. AIP Conf Proc. 2020;2227(1):020016.
  • 24. Wang J, Wang X, Luo Z, Assadian F. Active Disturbance Rejection Control of Differential Drive Assist Steering for Electric Vehicles. Energies. 2020;13(10):2647.
  • 25. Kupiec J, Kupiec A. Dokładność oceny przez diagnostę siły nacisku na pedał hamulca. Autobusy Tech Eksploat Syst Transp. 2019; 20(12): 65-83.
  • 26. Ślaski G, Pikosz H. Badania drogowe zapotrzebowania energii w celu realizacji skrętu kół samochodu osobowego. Czas Tech Mech. 2012;(R. 109, z. 3–M):57–69.
  • 27. Borawski A, Szpica D, Mieczkowski G, Borawska E, Awad MM, Shalaby RM, i in. Theoretical Analysis of the Motorcycle Front Brake Heating Process during High Initial Speed Emergency Braking. J Appl Comput Mech. 2020;6(Special Issue):1431–7.
  • 28. McLoughlin IV, Narendra IK, Koh LH, Nguyen QH, Seshadri B, Zeng W, i in. Campus Mobility for the Future: The Electric Bicycle. J Transp Technol. 2012;02(01):1.
  • 29. Arango I, Lopez C, Ceren A. Improving the Autonomy of a Mid-Drive Motor Electric Bicycle Based on System Efficiency Maps and Its Performance. World Electr Veh J. 2021;12(2):59.
  • 30. Johansen PR, Patterson D, O’Keefe C, Swenson J. The use of an axial flux permanent magnet in-wheel direct drive in an electric bicycle. Renew Energy. 2001;22(1):151–7.
  • 31. Giesko T, Zbrowski A, Mizak W. Model mechatronicznego systemu do wspomagania rehabilitacji ruchowej. Probl Eksploat. 2012;(2): 67–78.
  • 32. Wieczorek B, Warguła Ł. Problems of dynamometer construction for wheelchairs and simulation of push motion. MATEC Web Conf. 2019;254:01006.
  • 33. Kukla M, Wieczorek B, Warguła Ł. Development of methods for performing the maximum voluntary contraction (MVC) test. MATEC Web Conf. 2018;157:05015.
  • 34. Torkia C, Reid D, Korner-Bitensky N, Kairy D, Rushton PW, Demers L, i in. Power wheelchair driving challenges in the community: a users’ perspective. Disabil Rehabil Assist Technol. 2015;10(3): 211–5.
  • 35. Langner M, Sanders D. Controlling wheelchair direction on slopes. J Assist Technol. 2008;2(2):32–41.
  • 36. Salmeron-Manzano E, Manzano-Agugliaro F. The Electric Bicycle: Worldwide Research Trends. Energies. 2018;11(7):1894.
  • 37. Warguła Ł, Marciniak A. The Symmetry of the Muscle Tension Signal in the Upper Limbs When Propelling a Wheelchair and Innovative Control Systems for Propulsion System Gear Ratio or Propulsion Torque: A Pilot Study. Symmetry. 2022;14(5):1002.
  • 38. Lafta HA, Guppy R, Whatling G, Holt C. Impact of rear wheel axle position on upper limb kinematics and electromyography during manual wheelchair use. Int Biomech. 2018;5(1):17–29.
  • 39. Ohashi S, Shionoya A, Harada K, Nagamori M, Uchiyama H. Posture Estimation Using Surface Electromyography during Wheelchair Hand-Rim Operations. Sensors. 2022;22(9):3296.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bce0385a-0eba-41da-abcd-f47affe97cb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.