PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The affinity for dialysate species of thermally modified titania nanotubes under static and dynamic conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: During the dialysis process, hemolysis is the most frequently occurring problem to solve. Titanium dioxide nanotubes (TNTs) can be considered as a material preventing hemodialysis or blood species deposition thanks to their unique properties, i.e., hydrophilicity, smooth surface, and antibacterial. The purpose of this work was the electrochemical, chemical, and morphological characteristics of the TNTs and the evaluation of the possibility of using them as filter parts in dialysis techniques. Methods: The tests were carried out on as-formed TNTs with a diameter of 50 ± 5 nm and 1000 ± 100 nm in height, and TNTs thermally modified in air atmosphere temperatures ranging from 350 to 550 °C. Electrochemical and microscopic analyses were performed both in the static and dynamic system of dialysis fluid (flow rate: 250 cm3/min). Additionally, deposition or damage of blood cells was specified during the ex vivo dialysis experiment. Results: Obtained results proved relationship between electrochemical properties of TNTs and the method of their modification. The results demonstrated that the TNTs annealed at 450 °C TNTs can be potentially applied for constructions dialysis membrane in the hemodialysis area due to their most stable stationary potential in dialysate, the highest value of impedance modulus, and the most favourable electrokinetic properties. Additionally, it was confirmed that annealed process causes improvement of corrosion resistance and protective properties for TNTs in the dialysis fluid. Conclusions: The result allowed for the conclusion that annealing is responsible for reduction of adsorption properties of TNTs, though this titanium dioxide nanotube still can be used as filter part in haemodialysis.
Rocznik
Strony
95--105
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • The Science and Technology Park of University of Zielona Góra, Zielona Góra, Poland
autor
  • Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
autor
  • Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
  • Department of Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Zielona Góra, Poland
Bibliografia
  • [1] ABE M., HAMANO T., WADA A., NAKAI S., MASAKANE I., Effect of dialyzer membrane materials on survival in chronic hemodialysis patients: Results from the annual survey of the Japanese Nationwide Dialysis Registry, PloS One, 2017, 12 (9), 1–18.
  • [2] ALVES S.A., ROSSI A.L., RIBEIRO A.R., TOPTAN F., PINTO A.M., CELIS J.P., SHOKUHFAR T., ROCHA L.A., Tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes in artificial saliva: Understanding of degradation mechanisms, Wear, 2017, 384–385, 28–42.
  • [3] AOYAGI S., HAYAMA M., HASEGAWA U., SAKAI K., TOZU M., HOSHI T., KUDO M., Estimation of protein adsorption on dialysis membrane by means of TOF-SIMS imaging, J. Membr. Sci., 2014, 236 (1–2), 91–99.
  • [4] ARKUSZ K., KRASICKA-CYDZIK E., The effect of phosphates and fluorides, included in TiO2 nanotube layers on the performance of hydrogen peroxide detection, Arch. Metall. Mater., 2018, 63 (2), 765–772.
  • [5] ARKUSZ K., NYCZ M., PARADOWSKA E., PIJANOWSKA D.G., Electrochemical stability of TiO2 nanotubes deposited with silver and gold nanoparticles in aqueous environment, Environ. Nanotechnol. Monit. Manag., 2021, 15, 100401.
  • [6] ARKUSZ K., PARADOWSKA E., Impedimetric Detection of Femtomolar Levels of Interleukin 6, Interleukin 8, and Tumor Necrosis Factor Alpha Based on Thermally Modified Nanotubular Titanium Dioxide Arrays, Nanomaterials, 2020, 10 (12), 1–18.
  • [7] ARKUSZ K., PARADOWSKA E., NYCZ M., KRASICKA-CYDZIK E., Influence of Thermal Modification and Morphology of TiO2 Nanotubes on Their Electrochemical Properties for Biosensors Applications, J. Nanosci. Nanotechnol., 2018, 18, 3713–3721.
  • [8] ARKUSZ K., PARADOWSKA E., NYCZ M., MAZUREK-POPCZYK J., BALDY-CHUDZIK K., Evaluation of the Antibacterial Activity of Ag- and Au-Nanoparticles Loaded TiO2 Nanotubes, J. Biomed. Nanotechnol., 2020, 16 (9), 1416–1425.
  • [9] BOURE T., Which dialyser membrane to choose?, Nephrol. Dial. Transplant., 2004, 19 (2), 293–296.
  • [10] CUCCHIARI D., REVERTER E., BLASCO M., MOLINA-ANDUJAR A., CARPIO A., SANZ M., ESCORSELL A., FERNÁNDEZ J., POCH E., High cut-off membrane for in vivo dialysis of free plasma hemoglobin in a patient with massive hemolysis, BMC Nephrol., 2018, 19 (1).
  • [11] DIAMANTOGLOU M., LEMKE H.D., VIENKEN J., Cellulose--Ester as Membrane Materials for Hemodialysis, Int. J. Artif. Organs, 1994, 17 (7), 385–391.
  • [12] DOZZI M.V., OHTANI B., SELLI E., Absorption and action spectra analysis of ammonium fluoride-doped titania photocatalysts, Phys. Chem. Chem. Phys., 2011, 13 (40), 1821718227.
  • [13] FRIEDMAN E.A., An introduction to phosphate binders for the treatment of hyperphosphatemia in patients with chronic kidney disease, Kidney Int., 2005, 68 (96), 2–6.
  • [14] GAO Y.H., WANG S.N., WANG B.B., Biocompatibility of titanium dioxide nanotube bio-dialysis membrane, Chinese J. Tissue Eng. Res., 2017, 21, 4167–4171.
  • [15] GARCÍA-VALVERDE M.T., LUCENA R., CÁRDENAS S., VALCÁRCEL M., Determination of urinary 5-hydroxyindoleacetic acid by combining Dμ-SPE using carbon coated TiO2 nanotubes and LC–MS/MS, Bioanalysis, 2015, 7 (22), 2857–2867.
  • [16] JODKO D., OBIDOWSKI D., REOROWICZ P., JÓŹWIK K., Numerical investigations of the unsteady blood flow in the end-to--side arteriovenous fistula for hemodialysis, Acta Bioeng. Biomech., 2016, 18 (4), 3–13.
  • [17] JODKO D., OBIDOWSKI D., REOROWICZ P., JÓŹWIK K., Simulations of the blood flow in the arterio-venous fistula for haemodialysis, Acta Bioeng. Biomech., 2014, 16 (1), 69–74.
  • [18] KAFI A.K.M., WU G., CHEN A., A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays, Biosens. Bioelectron., 2008, 24, 566–571.
  • [19] KATARIA A., TRASANDE L., TRACHTMAN H., The effects of environmental chemicals on renal function, Nat. Rev. Nephrol., 2015, 11 (10), 610–625.
  • [20] KODAMA A., BAUER S., KOMATSU A., ASOH H., ONO S., SCHMUKI P., Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite, Acta Biomater., 2009, 5 (6), 2322–2330.
  • [21] KRZAK-ROŚ J., FILIPIAK J., PEZOWICZ C., BASZCZUK A., MILLER M., KOWALSKI M., BĘDZIŃSKI R., The effect of substrate roughness on the surface structure of TiO2, SiO2, and doped thin films prepared by the sol–gel method, Acta Bioeng. Biomech., 2009, 11 (2), 21–29.
  • [22] KULKARNI M. et al., Binding of plasma proteins to titanium dioxide nanotubes with different diameters, Int. J. Nanomedicine, 2015, 10, 1359–1373.
  • [23] MACAK J., TSUCHIYA H., GHICOV A., YASUDA K., HAHN R., BAUER S., SCHMUKET P., TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater Sci., 2007, 11, 3–18.
  • [24] MAZARE A. et al., Heat treatment of TiO2 nanotubes, a way to significantly change their behaviour, UPB Sci. Bull B: Chem. Mater Sci., 2011, 73, 97–108.
  • [25] NYCZ M., PARADOWSKA E., ARKUSZ K., PIJANOWSKA D.G., Influence of geometry and annealing temperature in argon atmosphere of TiO2 nanotubes on their electrochemical properties, Acta Bioeng. Biomech., 2020, 22 (1), 165–177.
  • [26] NYCZ M., PARADOWSKA E., ARKUSZ K., KUDLIŃSKI B., KRASICKA-CYDZIK E., Surface analysis of long-term hemodialysis catheters made of carbothane (poly(carbonate)urethane) before and after implantation in the patients’ bodies, Acta Bioeng. Biomech., 2018, 20 (2), 47–53.
  • [27] OLCZYK P., MAŁYSZCZAK A., KUSZTAL M., Dialysis membranes: A 2018 update, Polim. Med., 2018, 48 (1), 57–63.
  • [28] PARK H.H., PARK S., KIM K.S., JEON W.Y., PARK B.K., KIM H.S., BAE T.S., LEE M.H., Bioactive and electrochemical characterization of TiO2 nanotubes on titanium via anodic oxidation, Electrochim. Acta, 2010, 55, 6109–6114.
  • [29] SAJI V.S., CHOE H.C., Electrochemical corrosion behaviour of nanotubular Ti–13Nb–13Zr alloy in Ringer’s solution, Corros. Sci., 2009, 51 (8), 1658–1663.
  • [30] SMITH B.S., POPAT K.C., Titania Nanotube Arrays as Interfaces for Blood-Contacting Implantable Devices: A Study Evaluating the Nanotopography-Associated Activation and Expression of Blood Plasma Components, J. Biomed. Nanotechnol., 2012, 8 (4), 642–658.
  • [31] SMITH B.S., YORIYA S., GRISSOM L., GRIMES C.A., POPAT K.C., Hemocompatibility of titania nanotube arrays, J. Biomed. Mater. Res. Part A, 2010, 95 (2), 350–360.
  • [32] TAŁAŁAJ M., MARCINOWSKA-SUCHOWIERSKA E., Pathogenesis and treatment of bone disease in patients with chronic renal failure, Post. Nauk Med., 2008, 6, 394–406
  • [33] THARMARAJ D., KERR P. G., Haemolysis in haemodialysis, Nephrology, 2017, 22 (11), 838–847.
  • [34] TORBICZ W., PIJANOWSKA D.G., DAWGUL M., Urea biosensors and their application in hemodialysis--perspective of EnFET application, Front. Med. Biol. Eng., 2000, 10 (2), 139–45.
  • [35] WU S., ZHANG D., BAI J., ZHENG H., DENG J., GOU Z., GAO C.H., Adsorption of serum proteins on titania nanotubes and its role on regulating adhesion and migration of mesenchymal stem cells, J. Biomed. Mater. Res., 2020, 180, 23052318.
  • [36] XIAO P., LIU D., GARCIA B.B., SEPEHRI S., ZHANG Y., CAO G., Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases, Sens. Actuators B Chem., 2008, 134 (2), 367–372.
  • [37] YANG B., NG C.K., FUNG M.K., LING C.C., DJURIŠIĆ A.B., FUNG S., Annealing study of titanium oxide nanotube arrays, Mater. Chem. Phys., 2011, 130 (3), 1227–1231.
  • [38] YU W.Q., QIU J., XU L., GUAN C., Corrosion behaviors of TiO2 nanotube layers on titanium in Hank’s solution, Biomed. Mater., 2009, 4, 65–12.
  • [39] ZHANG L., LIAO X., FOK A., NING C.H., NG P., WANG Y., Effect of crystalline phase changes in titania (TiO2) nanotube coatings on platelet adhesion and activation, Mater. Sci. Eng. C, 2018, 82, 91–101
  • [40] ZHEN L., JIDING Z., The influence of flow velocity on electrochemical reaction of metal surface, IOP Conf. Ser: Mater. Sci. Eng., 2017, 274, 012–098.
  • [41] ZHOU Q., FANG Z., LI J., WANG M., Applications of TiO2 nanotube arrays in environmental and energy fields: a review, Microporous Mesoporous Mater, 2015, 202, 22–35.
  • [42] ZOU J.P., WANG R.Z., Crack initiation, propagation and saturation of TiO2 nanotube film, T Nonferr. Metal. Soc., 2012, 22 (3), 627–633.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bce01e2b-187a-4a25-8564-61dcbbd98fae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.