PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and Parameter Estimation of Radar Sea-Clutter with Trimodal Gamma Population

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Real radar data often consist of a mixture of Gaussian and non-Gaussian clutter. Such a situation creates one or more inflexion points in the curve of the empirical cumulative distributed function (CDF). In order to obtain an accurate fit with sea reverberation data, we propose, in this paper, a trimodal gamma disturbance model and two parameter estimators. The non-linear least-squares (NLS) fit approach is used to avoid computational issues associated with the maximum likelihood estimator (MLE) and moments-based estimator for parameters of the mixture model. For this purpose, a combination of moment fit and complementary CDF (CCDF) NLS fit methods is proposed. The simplex minimization algorithm is used to simultaneously obtain all parameters of the model. In the case of a single gamma probability density function, a zlog(z) method is derived. Firstly, simulated life tests based on a gamma population with different shape parameter values are worked out. Then, numerical illustrations show that both MLE and zlog(z) methods produce closer results. The proposed trimodal gamma distribution with moments NLS fit and CCDF NLS fit estimators is validated to be in qualitative agreement with different cell resolutions of the available IPIX database.
Słowa kluczowe
Rocznik
Tom
Strony
82--90
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Laboratoire de Génie Electrique, LAGE, Département d'Electronique, Université Kasdi Merbah Ouargla, Ouargla, Algéria
autor
  • Département d'Electronique, Université Mohamed Boudiaf M'sila, M'sila, Algéria
  • Laboratoire SISCOM, Université de Constantine, Constantine, Algéria
  • Laboratoire de Génie Electrique, LAGE, Département d'Electronique, Université Kasdi Merbah Ouargla, Ouargla, Algéria
Bibliografia
  • [1] V. Anastassopoulos, G. A. Lampropoulos, A. Drosopoulos, and M. Rey, „High resolution radar clutter statistics", IEEE Trans. On Aerosp. and Electron. Syst., vol. 35, no. 1, 1999 (DOI: 10.1109/7.745679).
  • [2] I. Chalabi and A. Mezache, „Estimators of compound Gaussian clutter with log-normal texture", Remote Sensing Lett., vol. 10, no. 7, pp. 709-716, 2019 (DOI: 10.1080/2150704X.2019.1601275).
  • [3] V. G. Weinberg, S. D. Howard, and C. Tran, „Bayesian Framework for detector development in Pareto distributed clutter", IET Radar Sonar & Navig., vol. 13, no. 9, pp. 1548-1555, 2019 (DOI: 10.1049/iet-rsn.2018.5635).
  • [4] H. Yu, P. L. Shui, and Y. T. Huang, „Low-order moment-based estimation of shape parameter of CGIG clutter model", Electron. Lett., vol. 52, no. 18, pp. 1561-1563, 2016 (DOI: 10.1049/el.2016.2248).
  • [5] A. Mezache, F. Soltani, M. Sahed, and I. Chalabi, „Model for non-Rayleigh clutter amplitudes using compound inverse Gaussian distribution: An experimental analysis", IEEE Trans. on Aerosp. And Electron. Syst., vol. 51, no. 1, 2015 (DOI: 10.1109/TAES.2014.130332).
  • [6] A. Farina, F. Gini, M. V. Greco, and L. Verrazzani, „High resolution sea clutter data: statistical analysis of recorded live data", IEE Proc. - Radar, Sonar & Navig., vol. 144, no. 3, pp. 121-130, 1997 (DOI: 10.1049/ip-rsn:19971107).
  • [7] L. Rosenberg, D. J. Crisp, and N. J. Stacy, „Analysis of the KK-distribution with medium grazing angle sea-clutter", IET Radar, Sonar & Navig., vol. 4, no. 2, pp. 209-222, 2010 (DOI:10.1049/iet-rsn.2009.0096).
  • [8] X. Zhou, R. Peng, and C. Wang, „A two-component K-lognormal mixture model and its parameter estimation method", IEEE Trans. on Geosci. and Remote Sens., vol. 53, no. 5, 2015 (DOI: 10.1109/TGRS.2014.2363356).
  • [9] S. Bocquet, L. Rosenberg, and C. H. Gierull, „Parameter estimation for a compound radar clutter model with trimodal discrete texture", IEEE Trans. on Geosci. and Remote Sens., vol. 58, no. 10, 2020 (DOI: 10.1109/TGRS.2020.2979449).
  • [10] J. R. Nicholas, „Estimating the parameters of the K distribution In the intensity domain", Rep. DSTO-TR-0839, DSTO Electronics and Surveillance Research Laboratory, pp. 1-76, 1999, South Australia [Online]. Available: https://apps.dtic.mil/sti/pdfs/ADA368069.pdf
  • [11] S. Bocquet, „Parameter estimation for Pareto and K distributed clutter with noise", IET Radar, Sonar & Navig., vol. 9, no. 1, pp. 104-113, 2015 (DOI: 10.1049/iet-rsn.2014.0148).
  • [12] A. Mezache, A. Gouri, and H. Oudira, „Parameter estimation of CGIG clutter plus noise using constrained NIOME and MLE approaches", IET Radar, Sonar & Navig., vol. 12, no. 2, pp. 176-185, 2018 (DOI: 10.1049/iet-rsn.2017.0234).
  • [13] R. Vani Lakshmi and V. S. Vaidyanathan, „Parameter estimation in gamma mixture model using normal-based approximation", J. of Statis. Theory and Appl., vol. 15, no. 1, pp. 25-35, 2016 (DOI: 10.2991/jsta.2016.15.1.3).
  • [14] Q. Xianxiang, Z. Shilin, Z. Huanxin, and G. Gui, „A CFAR detection algorithm for generalized gamma distributed background In high-resolution SAR images", IEEE Geosci. and Remote Sens. Lett., vol. 10, no. 4, 2013 (DOI: 10.1109/LGRS.2012.2224317).
  • [15] É. Magraner, N. Bertaux, and P. Réfrégier, „A new CFAR detector In gamma-distributed non homogeneous backgrounds", in Proc. of 16th Eur. Sig. Process. Conf. EUSIPCO 2008, Lausanne, Switzerland, 2008 [Online]. Available: https://www.eurasip.org/Proceedings/Eusipco/Eusipco2008/papers/1569104566.pdf
  • [16] M. Abramowitz and I. A. Stegun, Ed., Handbook of Mathematical Functions. New York: Dover Publications, Inc., 1970 (ISBN: 978-0486612720).
  • [17] D. Blacknell and R. J. A. Tough, „Parameter estimation for the K-distribution based on [z log(z)]", IEE Proc. - Radar, Sonar & Navig., vol. 148, no. 6, 309-312, 2001 (DOI:10.1049/ip-rsn:20010720).
  • [18] T. P. Minka, „Estimating a Gamma distribution", 2002 [Online]. Available: https://tminka.github.io/papers/minka-gamma.pdf
  • [19] S. A. Hamadi, A. Chouder, M. M. Rezaoui, S. Motahhir, and A. M. Kaddouri, „Improved hybrid parameters extraction of a PV module using a moth ame algorithm", Electronics, vol. 10, 2021 (DOI: 10.3390/electronics10222798).
  • [20] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of Monte Carlo Methods. New York, NY, USA: Wiley, 2011 (ISBN: 9780470177938).
  • [21] J. A. Nelder and R. Mead, „A simplex method for function minimization", The Computer J., vol. 7, no. 4, pp. 308-313, 1965 (DOI: 10.1093/comjnl/7.4.308).
  • [22] M. Baudin, „Nelder-Mead user's manual" [Online]. Available: https://www.scilab.org/sites/default/_les/neldermead.pdf
  • [23] Shu-Kai, S. Fan, and E. Zahara „A hybrid simplex search and particie swarm optimization for unconstrained optimization", European J. of Oper. Res., vol. 181, no. 2, pp. 527-548, 2007 (DOI:10.1016/j.ejor.2006.06.034).
  • [24] R. Bakker and B. Currie, „The McMaster IPIX radar sea clutter database", 2001 [Online]. Available: http://soma.mcmaster.ca/ipix/
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcdf6abe-9018-4ea0-bd63-ea3dbfb5e73c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.