PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and numerical investigations of pipeline with resonator

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the current state of the art. regarding the use resonators in straight pipes. There is considerable need to control and reduce pressure pulsation in pipelines supplied with pulsating flows. The use of a Helmholz resonator introduces an additional degree of freedom to the analysed dynamic system. Building on previous experimental investigations by the authors, which identified the nonlinear properties of straight pipes supplied with pulsating flows, this study describes an experimental test rig, measurement methods and mechanical analogies for one (1DOF) and two (2DOF) degrees of freedom. The results are presented in the form of a 3D map of amplitude-frequency characteristics, as a function of the resonator volume determined by piston height. The dynamic properties of the described system are presented as amplitude-phase characteristics, based on a comparison of the numerical and experimental results.
Rocznik
Strony
17--22
Opis fizyczny
Bibliogr. 18 poz., fot. kolor., rys., wykr.
Twórcy
  • Institute of Turbomachinery, Flow Metrology Division, Lodz University of Technology, 219/223 Wolczanska, 90-924 Lodz
autor
  • Institute of Turbomachinery, Flow Metrology Division, Lodz University of Technology, 219/223 Wolczanska, 90-924 Lodz
Bibliografia
  • [1] Al-Kayiem, Ali, and Zhibin Yu. "Numerical investigation of a looped-tube traveling-wave thermoacoustic generator with a bypass pipe." Energy Procedia 142 (2017): 1474-1481.
  • [2] Zhao, Xiang, et al. "A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator." AIP Advances 7.6 (2017): 065211.
  • [3] Lan, Jun, et al. "Nonlinear effects in acoustic metamaterial based on a cylindrical pipewith ordered Helmholtz resonators." Physics Letters A 381.13 (2017): 1111-1117.
  • [4] Liu, Zheji, and Raymond Smith. "Vibration reduction of a centrifugal compressor for gas transmission." ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014.
  • [5] Cyklis, Piotr, and Przemysław Młynarczyk. "The influence of the spatial discretization methods on the nozzle impulse flow simulation results." Procedia Engineering 157 (2016): 396-403.
  • [6] Bhagwat, Siddharth, and M. Austin Creasy. "Adjustable pipes and adaptive passive damping." European Journal of Physics 38.3 (2017): 035003.
  • [7] Guo, Rong, Wen-bo Tang, and Wei-wei Zhu. "Acoustic performance and flowanalysis of amulti-chamber perforated resonator for the intake system of a turbocharged engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231.1 (2017): 120-129.
  • [8] Yue, Gui-Ping, and Yi-Min Zhang. "Dynamic sensitivity design of acoustic property of intake system of an engine." Journal of Vibration Engineering 23.4 (2010): 463-467.
  • [9] Servetto, Emanuele, et al. Experimental and Computational Investigation of a Quarter-Wave Resonator on a Large-Bore Marine Dual-Fuel Engine. No. 2017-24-0017. SAE Technical Paper, 2017.
  • [10] NEWMAN, Michael James, et al. "Verification of a Duct Resonator Array for Larger Pipe Diameters." Inter-Noise. 2014.
  • [11] Palacios, Sandra Rodiño, et al. "Qualification of Duct Resonator Array for Noise Reduction in Offshore Installations." ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012.
  • [12] Farooqui, Maaz, and Samir Mekid. "Simulation of Noise Attenuation Using One and Two Degree of Freedom Helmholtz Resonators in Pipelines." ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012.
  • [13] Gorin, S. V., and M. V. Kuklin. "Size and acoustic optimization of Helmholtz resonators." Russian Engineering Research 32.2 (2012): 115-117.
  • [14] Atkins, Kenneth E., Alan S. Pyle, and James D. Tison. "Understanding the Pulsation & Vibration Control Concepts in the New API 618 Fifth Edition [C]." the 2004 Gas Machinery Conference in Albuquerque. 2004.
  • [15] Pałczyński, T. Dynamic properties of pipes in different geometries with pulsating flows in transient states (sweeping up and down) under various temperature conditions, 14th International Conference “Dynamical Systems - Theory and applications - proceedings, Łódź, pp. 389-396.
  • [16] Olczyk A, Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow, International Journal of Heat and Fluid Flow, Volume 30, Issue 4, August 2009, Pages 637-646, ISSN 0142-727X, http://dx.doi.org/10.1016/j.ijheatfluidflow.2009.02.006.
  • [17] Pałczyński, Tomasz, and Wojciech Rydlewicz. "Hybrid Method for Researching Pulsating Flows in Pipes Exemplified with Orifice Application." Advances in Condition Monitoring of Machinery in Non-Stationary Operations. Springer, Cham, 2018. 309-317.
  • [18] Pałczyński, Tomasz. "Impact of Frequency Change Rate on Instantaneous Flow Parameters in Pipes." International Congress on Technical Diagnostic. Springer, Cham, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcd53e14-ed00-42bd-b85d-93ba4b016621
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.