PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving the Environmental Safety Risk Assessment in Construction Using Statistical Analysis Methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article aims to assess risk for substantiating the economic and organizational efficiency of construction in the context of ecologic safety. A quantitative risk estimation was made through the Monte Carlo way for negative and positive choices to avoid ecological harm. The simulation algorithm imitated the distribution obtained from the evidence-based fit. The outcomes of a sensitivity investigation are also prepared to verify the suggestion. This risk analysis technique has a digital computer implementation. The simulation data outputs demonstrate the alternative of the general norm of validation and the acceptance of the solution, which is not harmful to the environment. In situations of uncertainty, the decision to select the optimistic flavor with high spending (to retain the reliability of the technics) but less risk pretends to be a decisive factor in the eco-friendly protection strategies of the construction project.
Rocznik
Tom
Strony
110--128
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Saint Petersburg State University of Architecture and Civil Engineering, Russia
  • Saint Petersburg State University of Architecture and Civil Engineering, Russia
  • Koszalin University of Technology, Poland
  • Saint Petersburg State University of Architecture and Civil Engineering, Russia
Bibliografia
  • Aven, R. (2009). Risk analysis and management: basic concepts and principles. Reliability: Theory & Application, 1, 57-73.
  • Bieda, B. (2013). Stochastic approach to municipal solid waste landfill life based on the contaminant transit time modeling using the Monte Carlo (MC) simulation. Science of the Total Environment, 442(1), 489-496.
  • Bieda, B. (2012). Stochastic Analysis in Production Process and Ecology under Uncertainty. Berlin, New York: Springer.
  • Branford, S., Sahin, C., Thandavan, A., Weihrauch, C., Alexandrov, V.N., Dimov, I.T. (2008). Monte Carlo methods for matrix computations on the grid. Future Generation Computer Systems, 24(6), 605-612.
  • Che, Y.F., Wu, X., Pastore, G., Li, W., Shirvan, K. (2021). Application of kriging and variational Bayesian Monte Carlo method for improved prediction of doped UO2 fission gas release. Annals of Nuclear Energy, 153(1), 108046.
  • Choobar, B.G., Modarress, H., Halladj, R., Amjad-Iranagh, S. (2021). Electrodeposition of lithium metal on lithium anode surface, a simulation study by: Kinetic Monte Carlo-embedded atom method. Computational Materials Science, 192(1), 110343.
  • Chou, J., Ongkowijoyo, C.S. (2015). Reliability-based decision making for selection of ready-mix concrete supply using stochastic superiority and inferiority- ranking method. Reliability Engineering and System Safety, 137(1), 29-39.
  • Fathi-Vajargah, B., Hassanzadeh, Z. (2021). A new Monte Carlo method for solving system of linear algebraic equations. Computational Methods for Differential Equations, 9(1), 159-179.
  • Federal Service for Ecological, Technological and Nuclear Supervision (2016). Methodological bases for the analysis of hazards and risk assessment of accidents at hazardous production facilities. Safety guide. Moscow: Gosnadzor.
  • Graham, C., Talay, D. (2015). Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation. Berlin: Springer.
  • Huo, X.K. (2021). A compact Monte Carlo method for the calculation of k (infinity) and its application in analysis of (n,xn) reactions. Nuclear Engineering and Design, 376(1), 111092.
  • Kasriel, K., Wood, D. (2013). Upstream Petroleum Fiscal and Valuation Modeling in Excel: A Worked Examples Approach. Chichester, UK: Wiley.
  • Kuang, Z., Gu, Y., Rao, Y., Huang, H. (2021). Biological risk assessment of heavy metals in sediments and health risk assessment in marine organisms from Daya Bay, China. Journal of Marine Science and Engineering, 9(1), 17.
  • Larionova, Y., Smirnova, E. (2020). Substantiation of ecological safety criteria in construction industry, and housing and communal services. IOP Conference Series: Earth and Environmental Science, 543(1), 012002.
  • Lee, E.K. (2021). Determination of burnup limit for CANDU 6 fuel using Monte-Carlo method. Nuclear Engineering and Technology, 53(3), 901-910.
  • Oh, K.Y., Nam, W.A. (2021). A fast Monte-Carlo method to predict failure probability of off shore wind turbine caused by stochastic variations in soil. Ocean Engineering, 223(1), 108635.
  • Oliver, J., Qin, X.S., Madsen, H., Rautela, G.P., Joshi, C., Jorgensen, G. (2019). A probabilistic risk modelling chain for analysis of regional flood events. Stochastic Environmental Research and Risk Assessment, 33(1), 1057-1074.
  • Peter, R., Bifano, L., Fischerauer, G. (2021). Monte Carlo method for the reduction of measurement errors in the material parameter estimation with cavities. TM-Technisches Messen, 88(5), 303-310.
  • Pirsaheb, M., Hadei, M., Sharafi, K. (2021). Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran: Uncertainty and sensitivity analysis. Journal of Food Composition and Analysis, 96(1). 103697.
  • Pitchai, P., Jha, N.K., Nair, R.G., Guruprasad, P.J. (2021). A coupled framework of variational asymptotic method based homogenization technique and Monte Carlo approach for the uncertainty and sensitivity analysis of unidirectional composites. Composite Structures, 263(1), 113656.
  • Rashki, M. (2021). The soft Monte Carlo method. Applied Mathematical Modelling, 94, 558-575.
  • Rees, M. (2015). Business Risk and Simulation Modelling in Practice: Using Excel, VBA and @RISK. Chichester, UK: Wiley.
  • Rubinstein, R.Y. (1981). Simulation and the Monte Carlo method. New York: John Wiley and Sons.
  • Salling, K.B., Leleur, S. (2011). Transport appraisal and Monte Carlo simulation by use of the CBA-DK model. Transport Policy, 18(1), 236-245.
  • Smirnova, E. (2020). Environmental risk analysis in construction under uncertainty. In: S. Sementsov, A. Leontyev, S. Huerta, I. Menéndez Pidal de Nava (Eds.), Reconstruction and Restoration of Architectural Heritage (pp. 222-227). London: CRC Press.
  • Smirnova, E. (2021). Monte Carlo simulation of environmental risks of technogenic impact. In: E. Rybnov, P. Akimov, M. Khalvashi, E. Vardanyan (Eds.), Contemporary Problems of Architecture and Construction (pp. 355-360). London: CRC Press.
  • Smirnova, E., Larionov, A. (2020). Justification of environmental safety criteria in the context of sustainable development of the construction sector. E3S Web of Conferences, 157(1), 06011.
  • Tabim, P.M., Ferreira, M.L.R. (2015). Productivity monitoring of land pipelines welding via control chart using the Monte Carlo simulation. Journal of Software Engineering and Applications, 8(1), 539-548.
  • Taleb, N.N. (2007). The Black Swan: The Impact of the Highly Improbable. New York: Random house.
  • Thomopoulos, N.T. (2013). Essentials of Monte Carlo Simulation: Statistical Methods for Building Simulation Models. New York: Springer.
  • Toropova, A.P., Toropov, A.A. (2021). Can the Monte Carlo method predict the toxicity of binary mixtures? Environmental Science and Pollution Research, 28(11), 39493-39500.
  • Yu, J., Zhong, D., Ren, B., Tong, D., Hong, K. (2017). Probabilistic risk analysis of diversion tunnel construction simulation. Computer-Aided Civil and Infrastructure Engineering, 32(9), 748-771.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcd0f4e8-6c82-4ccd-8f07-4694d33a1fa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.