Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let k, n ∈ N,l ∈ N\ {1} , m ∈ N U {0}, and a(z)(≠ 0) be a holomorphic function, all of whose zeros have multiplicities at most m. Let F be a family of meromorphic functions in D such that multiplicities of zeros of each f ∈ F are at least k + m. If for f, g ∈ F satisfy fl(f(k))n and gl(g(k))n share a(z), then F is normal in D. The examples are provided to show that the result is sharp. The result extends the related theorems [9,10,12]. we also omit the conditions “m is divisible by n +1” and “all poles of f have multiplicities at least m + 1” in the result due to Meng, Liu and Xu [12] [Journal of Computational Analysis and Applications 27(3)(2019), 511-526].
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
141--154
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Xuanwei No. 9 Senior High School Yunnan, People’s Republic of China
Bibliografia
- [1] Hayman W.K., Research Problems of Function Theory, London: Athlone Press of Univ of London, 1967.
- [2] Yang L., Zhang G., Recherches sur la normalité des familles de fonctions analytiques á des valeurs multiples, Un nouveau critére et quelques applications, Sci. Sinica Ser, A 14(1965), 1258-1271.
- [3] Gu Y.X., On normal families of meromorphic functions, Sci. Sinica Ser, A 4(1978), 373-384.
- [4] Pang X.C., Bloch’s principle and normal criterion, Sci. Sinica Ser, A 11(1988), 1153-1159.
- [5] Fang M.L., On the value distribution of fn fl, Sci. China Ser, A 38(1995), 789-798.
- [6] Chen H.H., Zalcman L., On theorems of Hayman and Clunie, New Zealand J. Math., 28(1999), 71-75.
- [7] Zhang Q.C., Some normality criteria of meromorphic functions, Comp. Var. Ellip. Equat., 53(1)(2008), 791-795.
- [8] Hu P.C., Meng D.W., Normality criteria of meromorphic functions with multiple zeros, J. Math. Anal. Appl., 357(2009), 323-329.
- [9] Deng B.M., Lei C.L., Fang M.L., Normal families and shared functions concerning Hayman’s question, Bull. Malays. Math. Sci. Soc., 42(3) (2019), 847-857.
- [10] Jiang Y.B., Gao Z.S., Normal families of meromorphic functions sharing a holomorphic function and the converse of the Bloch principle, Acta. Math. Sci, 32B(2011), 1503-1512.
- [11] Ding J.J., Ding L.W., Yuan W.J., Normal families of meromorphic functions concerning shared values, Complex Var. Elliptic Equ., 58(1)(2013), 113-121.
- [12] Meng D.W., Liu S.Y., Xu H.Y., Normal criteria of meromorphic functions concerning holomorphic functions, Journal of Computational Analysis and Applications, 27(3)(2019), 511-524.
- [13] Pang X.C., Zalcman L., Normal families and shared values, Bull. London Math. Soc., 32(2000), 325-331.
- [14] Sun C.X., Normal families and shared values of meromorphic functions, (in Chinese), Chinese Ann. Math. Ser. A, 34(2)(2013), 205-210.
- [15] Chang J.M., Normality and quasinormality of zero-free meromorphic functions, Acta Mathematica Sinica, 28(2012), 707-716.
- [16] Deng B.M., Fang M.L., Liu D., Normal families of zero-free meromorphic functions, J. Aust. Math. Soc., 91(2011), 313-322.
- [17] Yang L., Value Distribution Theory, Springer, Berlin, 1993.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcc56b32-6fb9-4e4f-9d6a-46c44c732011