PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Phytoremediation of Copper and Zinc Contaminated Soil around Textile Industries using Bryophyllum pinnatum Plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phytoremediation is an acceptable, economical, and eco-friendly way to remediate the metal contaminated soils beside the industrial zone. Like other industries, the textile industries generate the effluent containing several types of pollutants such as metal conjugated dyes, several inorganic and organic substances, etc. When discharged to the environment, metals - specifically heavy metals - exert an adverse impact on soil and other biotas through the food chain. In this study, Bryophyllum pinnatum was used for phytoremediation in the contaminated soil sample collected from the area located around textile industries in Kaliakair, Bangladesh. The experiment was carried out by ex-situ in earthen pots. The concentration of six heavy metals including Zn, Cu, Ni, Cr, Pb, and Cd was analyzed before applying phytoremediation. Two heavy metals, Cu (28.57 µg/g) and Zn (143.88 µg/g) were found and others were not detected in that soil. After planting of Bryophyllum pinnatum, the concentrations of Cu and Zn in the contaminated soil were analyzed at three intervals of 45 days (S3), 90 days (S4), and 135 days (S5) in three replications. The experiment revealed that there was a decline in the concentration of Cu in soil (27.08 µg/g for 45 days and 13.19 µg/g for 90 days) except for the 3rd replication of 135 days (S5). However, the concentration of Zn (mean 103.09 µg/g) in soil was measured at 45 days and then remained within nearer values of concentration for other replications. The amounts of heavy metals uptake for both Cu and Zn by plants can be presented as leaves> stem >root which indicated that heavy metals were transferred from root to shoot over time. Bryophyllum pinnatum can, therefore, be considered as a good hyperaccumulator plant having BCF>1 and TF>1 values as well as possessing a better capacity of phytoextraction of metals.
Rocznik
Strony
88--97
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Department of Environmental Science, Bangladesh University of Professionals, Dhaka, Bangladesh
  • Department of Soil, Water and Environment, University of Dhaka, Dhaka, Bangladesh
Bibliografia
  • 1. Alaboudi, K.A., Ahmed, B., Brodie, G., 2018. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Ann. Agric. Sci. 63, 123–127. https://doi.org/10.1016/j.aoas.2018.05.007
  • 2. Antoniadis, V., Levizou, E., Shaheen, S.M., Ok, Y.S., Sebastian, A., Baum, C., Prasad, M.N.V., Wenzel, W.W., Rinklebe, J., 2017. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Science Rev. 171, 621–645. https://doi.org/10.1016/j.earscirev.2017.06.005
  • 3. Branquinho, C., Serrano, H.C., Pinto, M.J., MartinsLoução, M.A., 2007. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. Environ. Pollut. 146, 437–443. https://doi.org/10.1016/j.envpol.2006.06.034
  • 4. Cambier, P., Pot, V., Mercier, V., Michaud, A., Benoit, P., Revallier, A., Houot, S., 2014. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils. Sci. Total Environ. 499, 560–573. https://doi.org/10.1016/j.scitotenv.2014.06.105
  • 5. Chehregani, A., Noori, M., Yazdi, H.L., 2009. Phytoremediation of heavy-metal-polluted soils: Screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicol. Environ. Saf. 72, 1349–1353. https://doi.org/10.1016/j.ecoenv.2009.02.012
  • 6. Chen, L., Luo, S., Li, X., Wan, Y., Chen, J., Liu, C., 2014. Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol. Biochem. 68, 300–308. https://doi.org/10.1016/j.soilbio.2013.10.021
  • 7. Dubey, S., Shri, M., Gupta, A., Rani, V., Chakrabarty, D., 2018. Toxicity and detoxification of heavy metals during plant growth and metabolism. Environ. Chem. Lett. 16, 1169–1192. https://doi.org/10.1007/s10311-018-0741-8
  • 8. Ekwumemgbo, P.A., Eddy, N.O., Omoniyi, I.K., 2013. Decontamination of heavy metals in polluted soil by phytoremediation using bryophyllum pinnatum. E3S Web Conf. 1, 1–4. https://doi.org/10.1051/e3sconf/20130113004
  • 9. Fitz, W.J., Wenzel, W.W., 2002. Arsenic transformations in the soil-rhizosphere-plant system: Fundamentals and potential application to phytoremediation. J. Biotechnol. 99, 259–278. https://doi.org/10.1016/S0168-1656(02)00218-3
  • 10. Goswami, S., Das, S., 2016. Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotoxicol. Environ. Saf. 126, 211–218. https://doi.org/10.1016/j.ecoenv.2015.12.030
  • 11. Gupta, A., Balomajumder, C., 2015. Phytoremediation of heavy metals and its mechanism: A brief review. J. Integr. Sci. Technol. 3, 51–59.
  • 12. Herlina, L., Widianarko, B., Purnaweni, H., Sudarno, S., Sunoko, H.R., 2020. Phytoremediation of lead contaminated soil using croton (Cordiaeumvariegatum) plants. J. Ecol. Eng. 21, 107–113. https://doi.org/10.12911/22998993/122238
  • 13. Islam, M.S., 2012. Investigation of soil quality and heavy metal concentrations from a waste dumping site of Konabari industrial area at Gazipur in Bangladesh. IOSR J. Environ. Sci. Toxicol. Food Technol. 2, 01–07. https://doi.org/10.9790/2402-0210107
  • 14. Jain, R.K., Kapur, M., Labana, S., Lal, B., Sarma, P.M., Bhattacharya, D., Thakur, I.S., 2005. Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr. Sci. 89, 101–112.
  • 15. Kader, M., Lamb, D.T., Megharaj, M., Naidu, R., 2016. Sorption parameters as a predictor of arsenic phytotoxicity in Australian soils. Geoderma 265, 103–110. https://doi.org/10.1016/j.geoderma.2015.11.019
  • 16. Kumar, S., Prasad, S., Yadav, K.K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q.V., Kamyab, H., Khan, S.A., Yadav, S., Malav, L.C., 2019. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches A review. Environ. Res. 179, 108792. https://doi.org/10.1016/j.envres.2019.108792
  • 17. Li, C., Zhang, Z., Li, Y., Cao, J., 2015. Study on dyeing wastewater treatment at high temperature by MBBR and the thermotolerant mechanism based on its microbial analysis. Process Biochem. 50, 1934–1941. https://doi.org/10.1016/j.procbio.2015.08.007
  • 18. Ling, T., Gao, Q., Du, H., Zhao, Q., Ren, J., 2017. Growing, physiological responses and Cd uptake of Corn (Zea mays L.) under different Cd supply. Chem. Speciat. Bioavailab. 29, 216–221. https://doi.org/10.1080/09542299.2017.1400924
  • 19. Liu, L., Li, W., Song, W., Guo, M., 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 633, 206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161
  • 20. Ma, Y., Rajkumar, M., Zhang, C., Freitas, H., 2016. Beneficial role of bacterial endophytes in heavy metal phytoremediation. J. Environ. Manage. 174, 14–25. https://doi.org/10.1016/j.jenvman.2016.02.047
  • 21. Mani, S., Chowdhary, P., Hare, V., 2019. Industrial effluents: impact on agricultural soils and microbial diversity, in: Ajit Varma, Swati Tripathi, R.P. (Ed.), Plant Biotic Interactions. Springer Nature Switzerland AG, pp. 43–60.
  • 22. Mao, X., Jiang, R., Xiao, W., Yu, J., 2015. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 285, 419–435. https://doi.org/10.1016/j.jhazmat.2014.12.009
  • 23. Morris, S.J., Blackwood, C.B., 2015. The Ecology of the Soil Biota and their Function, in: Paul, E.A. (Ed.), Soil Microbiology, Ecology and Biochemistry. Elsevier Inc., pp. 273–309. https://doi.org/10.1016/b978-0-12-415955-6.00010-4
  • 24. Muthusaravanan, S., Sivarajasekar, N., Vivek, J.S., Paramasivan, T., Naushad, M., Prakashmaran, J., Gayathri, V., Al-Duaij, O.K., 2018. Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ. Chem. Lett. 16, 1339–1359. https://doi.org/10.1007/s10311-018-0762-3
  • 25. Nagajyoti, P.., Lee, K.., Sreekanth, T.., 2010. Heavy metals occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8, 199–216.
  • 26. Olegario, J.T., Yee, N., Miller, M., Sczepaniak, J., Manning, B., 2010. Reduction of Se(VI) to Se(II) by zerovalent iron nanoparticle suspensions. J. Nanoparticle Res. 12, 2057–2068. https://doi.org/10.1007/s11051-009-9764-1
  • 27. Patra, D.K., Pradhan, C., Patra, H.K., 2020. Toxic metal decontamination by phytoremediation approach: Concept, challenges, opportunities and future perspectives. Environ. Technol. Innov. 18, 100672. https://doi.org/10.1016/j.eti.2020.100672
  • 28. Phaenark, C., Pokethitiyook, P., Kruatrachue, M., Ngernsansaruay, C., 2009. Cd and Zn accumulation in plants from the Padaeng zinc mine area. Int. J. Phytoremediation 11, 479–495. https://doi.org/10.1080/15226510802656243
  • 29. Pinto, A.P., Varennes, A. de, Fonseca, R., Teixeira, D.M., 2015. Phytoremediation of Soils Contaminated with Heavy Metals: Techniques and Strategies, in: Abid A. Ansari, Gill, S.S., Gill, R., Lanza, G.R., Newman, L. (Eds.), Phytoremediation: Management of Environmental Contaminants. Springer International Publishing, pp. 133–147. https://doi.org/10.1007/978-3-319-10395-2
  • 30. Prasad, M.N.V., De Oliveira Freitas, H.M., 2003. Metal hyperaccumulation in plants Biodiversity prospecting forphytoremediation technology. Electron. J. Biotechnol. 6, 110–146. https://doi.org/10.2225/vol6-issue3-fulltext-6
  • 31. Sabir, M., Waraich, E.A., Hakeem, K.R., Öztürk, M., Ahmad, H.R., Shahid, M., 2015. Phytoremediation: Mechanisms and Adaptations. Mechanisms and Adaptations. Soil Remediat. Plants Prospect. Challenges 85–105. https://doi.org/10.1016/B978-0-12-799937-1.00004-8
  • 32. Shah, V., Daverey, A., 2020. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 18, 100774. https://doi.org/10.1016/j.eti.2020.100774
  • 33. Shaheen, S.M., Tsadilas, C.D., Rinklebe, J., 2013. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Adv. Colloid Interface Sci. 201–202, 43–56. https://doi.org/10.1016/j.cis.2013.10.005
  • 34. Sharma, S.S., Dietz, K.J., Mimura, T., 2016. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ. 39, 1112–1126. https://doi.org/10.1111/pce.12706
  • 35. Sherene, T., 2010. Mobility and transport of heavy metals in polluted soil environment. Biol. Forum – An Int. J. 2, 112–121. https://doi.org/10.1097/00006454-199809000-00028
  • 36. Shi, X., Chen, Y.T., Wang, S.F., Pan, H.W., Sun, H.J., Liu, C.X., Liu, J.F., Jiang, Z.P., 2016. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. Int. J. Phytoremediation 18, 1155–1163. https://doi.org/10.1080/15226514.2016.1189399
  • 37. Srivastava, N., 2016. Role of Phytochelatins in Phytoremediation of Heavy Metals Contaminated Soils. Phytoremediation Manag. Environ. Contam. Vol. 3 1–576. https://doi.org/10.1007/978-3-319-40148-5
  • 38. Thakur, S., Singh, L., Wahid, Z.A., Siddiqui, M.F., Atnaw, S.M., Din, M.F.M., 2016. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ. Monit. Assess. 188. https://doi.org/10.1007/s10661-016-5211-9
  • 39. Tusher, T., Piash, A., Latif, M., Kabir, M., Rana, M., 2018. Soil Quality and Heavy Metal Concentrations in Agricultural Lands around Dyeing, Glass and Textile Industries in Tangail District of Bangladesh. J. Environ. Sci. Nat. Resour. 10, 109–116. https://doi.org/10.3329/jesnr.v10i2.39020
  • 40. Tusher, T., Piash, A., Latif, M., Kabir, M., Rana, M., 2017. Soil Quality and Heavy Metal Concentrations in Agricultural Lands around Dyeing , Glass and Textile Industries in Tangail District of Bangladesh. J. Environ. Sci. Nat. Rexources 10, 109–116.
  • 41. Volk, J., Yerokun, O., 2016. Effect of application of increasing concentrations of contaminated water on the different fractions of Cu and Co in sandy loam and clay loam soils. Agriculture 6, 1–19. https://doi.org/10.3390/agriculture6040064
  • 42. Wei, H., Huang, M., Quan, G., Zhang, J., Liu, Z., Ma, R., 2018. Turn bane into a boon: Application of invasive plant species to remedy soil cadmium contamination. Chemosphere 210, 1013–1020. https://doi.org/10.1016/j.chemosphere.2018.07.129
  • 43. Yang, W., Wang, Y., Liu, D., Hussain, B., Ding, Z., Zhao, F., Yang, X., 2020. Interactions between cadmium and zinc in uptake, accumulation and bioavailability for Salix integra with respect to phytoremediation. Int. J. Phytoremediation 22, 628–637. https://doi.org/10.1080/15226514.2019.1701981
  • 44. Ye, S., Zeng, G., Wu, H., Zhang, Chang, Dai, J., Liang, J., Yu, J., Ren, X., Yi, H., Cheng, M., Zhang, Chen, 2017. Biological technologies for the remediation of co-contaminated soil. Crit. Rev. Biotechnol. 37, 1062–1076. https://doi.org/10.1080/07388551.2017.1304357
  • 45. Yoon, J., Cao, X., Zhou, Q., Ma, L.Q., 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ. 368, 456–464. https://doi.org/10.1016/j.scitotenv.2006.01.016
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcc54f51-7387-4e4f-9986-f00e91eb10d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.