PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurement of electromagnetic characteristics of BIOMAG - medical device for magnetotherapy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Pomiar właściwości elektromagnetycznych BIOMAG - urządzenia medycznego do magnetoterapii
Języki publikacji
EN
Abstrakty
EN
Magnetotherapy is physical therapeutic method in human medicine based on the application of pulsed magnetic fields. The magnetic flux density and intensity of electric field were measured for 32 programs of the Biomag device and all its applicators and their combinations (solenoid, triangle, light, solenoid + light, triangle + light). Each program was switched on for 5 minutes with intensity set to 100%. The highest value of magnetic flux density 420.98 µT was achieved by the program with the highest frequency 160 Hz. A statistically significant difference in the magnetic flux density was detected during the application of a radiofrequency signal on the control unit (decrease in magnetic flux density on average by 20.42 µT) compared to without the radiofrequency signal. Using Biomag device under laboratory conditions, an average value of 2.13 µT and the highest maximum 56.78 µT were found. The values did not reach the ICNIRP limits but exceeded the EUROPAEM/BioInitiative recommendations. Simulations and measurements with and without a human head phantom confirmed that low frequency magnetic fields are not significantly attenuated in artificial brain tissue. The measured values in the head phantom ranged from 239 µT to 323 µT. The aim of this study was to verify if the tested device can be used not only for supplemental human magnetotherapy but also for the experimental purposes.
PL
Magnetoterapia to fizykoterapeutyczna metoda w medycynie człowieka oparta na zastosowaniu impulsowych pól magnetycznych. Zmierzono gęstość strumienia magnetycznego i natężenie pola elektrycznego dla 32 programów urządzenia Biomag i wszystkich jego aplikatorów oraz ich kombinacji (elektromagnes, trójkąt, światło, elektromagnes + światło, trójkąt + światło). Każdy program włączano na 5 minut z intensywnością ustawioną na 100%. Największą wartość gęstości strumienia magnetycznego 420,98 µT uzyskał program o najwyższej częstotliwości 160 Hz. Wykryto statystycznie istotną różnicę w gęstości strumienia magnetycznego podczas przykładania sygnału o częstotliwości radiowej do jednostki sterującej (spadek gęstości strumienia magnetycznego średnio o 20,42 µT) w porównaniu z brakiem sygnału o częstotliwości radiowej. Używając urządzenia Biomag w warunkach laboratoryjnych uzyskano średnią wartość 2,13 µT i najwyższe maksimum 56,78 µT. Wartości nie osiągnęły limitów ICNIRP, ale przekroczyły zalecenia EUROPAEM/BioInitiative. Symulacje i pomiary z fantomem ludzkiej głowy i bez niego potwierdziły, że pola magnetyczne o niskiej częstotliwości nie są znacząco osłabiane w sztucznej tkance mózgowej. Zmierzone wartości w fantomie głowy mieściły się w zakresie od 239 µT do 323 µT. Celem pracy było sprawdzenie, czy badane urządzenie może być wykorzystywane nie tylko do uzupełniającej magnetoterapii człowieka, ale również do celów eksperymentalnych.
Rocznik
Strony
74--79
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Department of Medical Biophysics, Mala Hora 4, 036 01 Martin, Slovak Republic
autor
  • Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Department of Medical Biophysics, Mala Hora 4, 036 01 Martin, Slovak Republic
autor
  • Faculty of Electrical Engineering and Information Technology, University of Zilina, Department of Electromagnetic and Biomedical Engineering, Univerzitna 1, 010 01 Zilina, Slovak Republic
  • Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Department of Pathological Physiology, Mala Hora 4, 036 01 Martin, Slovak Republic
  • Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Department of Medical Biophysics, Mala Hora 4, 036 01 Martin, Slovak Republic
  • Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Department of Thoracic Surgery, Mala Hora 4, 036 01 Martin, Slovak Republic
autor
  • Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Department of Medical Biophysics, Mala Hora 4, 036 01 Martin, Slovak Republic
Bibliografia
  • [1] Rubik B., Bioelectromagnetics & the Future of Medicine, Administrative Radiology Journal, 16 (1997), nr 8, 38-46
  • [2] Israel M., Zaryabova V., Ivanova M., Electromagnetic field occupational exposure: Non-thermal vs. thermal effects, Electromagnetic Biology and Medicine, 32 (2013), nr 2, 145-154, doi: 10.3109/15368378.2013.776349
  • [3] Shankayi Z., Firoozabadi S. M. P., Mansourian M., Mahna A., The effects of pulsed magnetic field exposure on the permeability of leukemia cancer cells, Electromagnetic biology and medicine, 33 (2014), nr 2, 154- 158, doi: 10.3109/15368378.2013.800103
  • [4] Binhi V. N., Prato F. S., Rotations of macromolecules affect nonspecific biological responses to magnetic fields, Scientific Reports, 8 (2018), doi: 10.1038/s41598-018-31847-y
  • [5] Navratil L., Rosina J. et al., Medical biophysics, Prague: Grada Publishing, 2005
  • [6] Capko J., Basics of physiotherapy, Prague: Grada Publishing, 2007
  • [7] Tai Y. K., Ng Ch., Purnamawati K., Yap J. L. Y., Yin J. N., Magnetic fields modulate metabolism and gut microbiome in correlation with Pgc-1α expression: Follow-up to an in vitro magnetic mitohormetic study, The FASEB Journal, 34 (2020), nr 8, 11143-11167, doi: 10.1096/fj.201903005RR
  • [8] Biermann N., Sommerauer L., Diesch S., Koch Ch., Jung F., Kehrer A., Prantl L., Taeger Ch. D., The influence of pulsed electromagnetic field therapy (PEMFT) on cutaneous blood flow in healthy volunteers, Clinical Hemorheology and microcirculation, 76 (2020), nr 4, 495-501, doi: 10.3233/CH-209224
  • [9] Huang P., Xu L., Xie Y., Biomedical Applications of Electromagnetic Detection: A Brief Review, Biosensors, 11 (2021), nr 7, doi: 10.3390/bios11070225
  • [10] Afshari D., Moradian N., Khalili M., Razazian N., Bostani A., Hoseini J., Moradian M., Ghiasian M., Evaluation of pulsing magnetic field effects on paresthesia in multiple sclerosis patients, a randomized, double-blind, parallel-group clinical trial, Clinical Neurology and Neurosurgery, 149 (2016), 171-174, doi: 10.1016/j.clineuro.2016.08.015
  • [11] Eid M.M., El-Gendy A.M., Abdelbasset W.K., Elkholi S.M., Abdel-Fattah M.S., The effect of magnetic therapy and moderate aerobic exercise on osteoporotic patients: A randomized clinical study, Medicine, 100 (2021), nr 39, doi: 10.1097/MD.0000000000027379
  • [12] Xu A., Wang Q., Lv X., Lin T., Progressive Study on the Non-thermal Effects of Magnetic Field Therapy in Oncology, Frontiers in Oncology, 11 (2021), doi: 10.3389/fonc.2021.638146
  • [13] Kim S.J., Jang Y.W., Hyung K.E., Lee D.K., Hyun K.H., Jeong S.H., Min K.H., Kang W., Jeong J.H., Park S.Y., Extremely Low-frequency electromagnetic field exposure enhances inflammatory response and inhibits effect of antioxidant in RAW 264.7 cells, Bioelectromagnetics, 38 (2017), nr 5, 374–385, doi: 10.1002/bem.22049
  • [14] Hrncir K., Biomag Lumina, Pulsed magnetic therapy device: Operating instructions, Chomutice: BIOMAG, REV Ga 18/05
  • [15] ICNIRP, Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz), Health Physics, 74 (1998), nr 4, 494–522
  • [16] Karipidis K. K., Measurement of residential power frequency magnetic fields, Australian Radiation Protection and Nuclear Safety Agency, Technical Report, 134 (2002), 2-26
  • [17] Psenakova Z., The influence of the electromagnetic field on the human body with a focus on the human head, PhD thesis, 2007, University of Zilina
  • [18] IT'IS Swiss, The Foundation for Research on Information Technologies in Society, Dielectric properties of biological tissues, available online (accessed: 03.10.2022): https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/
  • [19] Murawski P., Krawczyk A., Kowalski A., Kalicki B., Mroz J., Iwaniszczuk A., Łada-Tondyra E., A new approach to the design of devices used in therapy electromagnetic field, Przegląd Elektrotechniczny, 91 (2015), nr 12, 170-172, doi:10.15199/48.2015.12.43
  • [20] Poljak D., Sesnic S., Cavka D., Titlic M., Mihalj M., The human body exposed to a magnetotherapy device magnetic field, Modelling in Medicine and Biology, WIT Press, 8 (2009), nr 13, 203-211, doi: 10.2495/BIO090191
  • [21] Furuhata H., Electromagnetic Interferences of Electric Medical Equipment from Hand-held Radiocommunication Equipment, Int’l. Symp. Electromagnetic Compatibility, (1999), 468-71
  • [22] Mariappan P. M., Raghavan D. R., Aleem S. H. E. A., Zobaa A.F., Effects of electromagnetic interference on the functional usage of medical equipment by 2G/3G/4G cellular phones: A review, Journal of Advanced Research, 13 (2016), nr 7 (5), 727-738, doi: 10.1016/j.jare.2016.04.004
  • [23] Badizadegan N. D., Greenberg S., Lawrence H., Badizadegan K., Radiofrequency Interference in the Clinical Laboratory: Case Report and Review of the Literature, American Journal of Clinical Pathology, 151 (2019), nr 5, 522- 528, doi: 10.1093/ajcp/aqy174
  • [24] ICNIRP, Guidelines (2010) for limiting exposure to time varying electric and magnetic fields (1HZ – 100 kHZ), Health physics, 99 (2010), nr. 6, 818-836, doi: 10.1097/HP.0b013e3181f06c86
  • [25] Belyaev I., Dean A., Eger H., Hubmann G., Jandrisovits R., et al., EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF related health problems and illnesses, Reviews on Environmental Health, 31 (2016), nr 3, 363-397, doi: 10.1515/reveh-2016-0011
  • [26] Carpenter D.O., Sage C., Key scientific evidence and public health policy recommendations. A Rationale for Biologically-based Public Exposure Standards for Electromagnetic Fields, (2007), available online (accessed: 11.11.2022): https://bioinitiative.org/wp344content/uploads/pdf s/sec24_2007_Key_Scientific_Studies.pdf
  • [27] Tavakoli H., Heidarpanah A., Designing a circular coil of repetitive transcranial magnetic stimulation at frequencies of 0.5 and 1 Hz using CST studio suite software and comparison of results with theoretical calculations, Biomed Biotechnol Res J 6 (2022), 382-6, doi: 10.4103/bbrj.bbrj_174_22
  • [28] Kanje M., Rusovan A., Sisken B., Lundborg G., Pretreatment of Rats with Pulsed Electromagnetic Fields Enhances Regeneration of the Sciatic Nerve, Bioelectromagnetics, 14 (1993), nr 4, 353-359, doi: 10.1002/bem.2250140407
  • [29] Thomas W., Kavaliers M., Prato F. S., Ossenkopp K. P., Antinociceptive Effects of a Pulsed Magnetic Field in the Land Snail, Cepaea nemoralis, Neuroscience Letters, 222 (1997), nr 2, 107-110, doi: 10.1016/s0304-3940(97)13359-6
  • [30] Dorokhov V. B., Tkachenko O. N., Sakharov D. S., Arsenyev G. N., Taranov A. O., Effects of Exposure to Weak Ultra Low Frequency Electromagnetic Fields on the Structure of Daytime Sleep, Neuroscience and Behavioral Physiology, 51 (2021), 1211-1215, doi: 10.1007/s11055-021-01181-4
  • [31] IARC, Non-Ionizing Radiation, Part 1: Static and Extremely Low-Frequency (ELF) Electric and Magnetic Fields, IARC Monographs on the Evaluation of Carcinogenic Risks Humans, Lyon, France, IARC Press, 80 (2002), 1-395
  • [32] Manikonda P. K., Rajenda P., Devendranath D., Gunasekaran B., Channakeshava, Aradhya S. R., Sashidhar R. B., Subramanyam C., Extremely low frequency magnetic fields induce oxidative stress in rat brain, General physiology and biophysics, 33 (2014), nr 1, 81-90, doi: 10.4149/gpb_2013059
  • [33] Pedersen, C., Poulsen, A.H., Rod, N.H., Rod, N.H., Frei, P., et al., Occupational exposure to extremely low-frequency magnetic fields and risk for central nervous system disease: an update of a Danish cohort study among utility workers, International Archives Occupational and Environmental Health, 90 (2017), 619–628, doi: 10.1007/s00420-017-1224-0
  • [34] Radil R., Barabas J., Janousek L., Bereta M., Frequency Dependent Alterations of S. Cerevisiae Proliferation Due to LF EMF Exposure, Advances in Electrical and Electronic Engineering, 18 (2020), nr 2, 99-106, doi: 10.15598/aeee.v18i2.3461
  • [35] Sladicekova K., Bereta M., Misek J., Parizek D., Jakus J., Biological effects of a low-frequency electromagnetic fields on yeast cells of the genus Saccharomyces Cerevisiae, Acta Medica Martiniana, 21 (2021), nr 2, 34-41, doi: 10.2478/acm-2021-0006
  • [36] Zastko L., Makinistian L., Tvarozna A., Ferreyra F. L., Belyaev I., Mapping of static magnetic fields near the surface of mobile phones, Scientific Reports, 11 (2021), doi: 10.1038/s41598-021-98083-9
  • [37] Makinistian L., Zastko L., Tvarozna A., Dias L. E., Belyaev I., Static magnetic fields from earphones: Detailed measurements plus some open questions, Environmental Research, 214 (2022), Part 2, doi: 10.1016/j.envres.2022.113907
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bcc1f363-fce1-440d-980a-a03323aaada8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.